
The borehole deformation data suggests 
that creep of the Murtèl rockglacier as a whole 
is governed by a non-linear viscous �ow law 
with a stress exponent (n) between 4 and 6 
(i.e., m–1) (Fig. 6 & 7; Table 1). However, the 
rockglaicer may be divided into a lower part 
with strong strain localization (shear zone) 
and the main rockglacier body with an 
almost linear (n≈1) rheological �ow law.

The curvature of the furrow-and-ridge 
morphology suggests an almost linear (n≈1) 
rheological �ow law (Fig. 10).

This may indicate that the development of 
the furrow-and-ridge morphology is 
independent of the basal shear zone and is 
only governed by the �ow of the main 
rockglacier body. Such assumption has been 
made by Frehner et al. (2014).

Outlook
Our work continues and will be �nalized 

during the BSc Thesis of D. Amschwand. Next, 
we will feed the best-�tting rheological �ow 
law  into a 3D �nite-element model (Fig. 11 as 
example) to study the internal dynamics 
(stresses & strain rates) of rockglaicer �ow. 

 Fig. 11: Di�erent  views of  3D 
feasibility simulation. A DEM

(Fig. 4) de�nes the model
topography. The base

is equal to the 2D
model (Fig. 2).
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   : shear stress,    : shear strain rate,
ux: displacement in �ow direction,
x: �ow direction, y: direction 
perpendicular to �ow, z: depth, A, B, 
C: material or geometrical constants.
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The creep behavior (rheology) of rockglaciers may deviate from the well-known �ow-law for pure ice. 
Here we constrain the non-linear �ow law governing rockglacier creep based on borehole deformation 
data and geomorphological criteria. The Murtèl rockglacier (upper Engadin valley, SE Switzerland) serves 
as a case study, for which high-resolution DEMs, time-lapse borehole deformation data, and geophysical 
soundings exist that reveal the exterior and interior architecture and dynamics of the landform.

Borehole inclination data of the Murtèl rockglacier (Arenson et al., 2002) reveal a curved deformation 
pro�le. In map view, the prominent furrow-and-ridge morphology also exhibits a curved geometry. Hence, 
the surface morphology and the borehole deformation data together describe a curved 3D �ow geometry. 
Frehner et al. (2015) reproduced the curved vertical �ow pro�le and the furrow-and-ridge morphology (yet 
neglecting its curved geometry in map view) using a 2D linear viscous (Newtonian) �ow model.

Linear viscous models result in perfectly parabolic �ow geometries; non-linear creep leads to localized 
deformation at the bottom and sides of the rockglacier while the deformation at the top and in the interior 
are less intense. In other words, non-linear creep results in non-parabolic �ow geometries. By comparing 
the curved 3D �ow geometry with theoretical 3D �ow geometries, we determine the most adequate 
�ow-law that �ts the natural deformation geometry best.

The Murtèl rockglacier

 Fig. 1: Regional overview (Google Earth) of Piz Corvatsch and the Murtèl cirque. Grab a pair of red-blue 3D 
glasses. Important: Relax your eyes; e.g. focus on the furthest peaks right of the center of the image.

Basic research idea and work�ow

Motivation: Our previous work

Used data

 Fig. 2: 2D linear viscous �nite- element model  
based on the Murtèl rockglacier (h=3 m, R=21).
 Fig. 3: The simulation reproduces Murtèl’s furrow- 
and-ridge morphology (L≈20 m) and the upper part 
of the curved borehole deformation pro�le.
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In Frehner et al. (2015), we applied the buckle folding theory for linear viscous (Newtonian) materials to 
explain the furrow-and-ridge morphology on the Murtèl rockglacier. Based on the spacing of the furrows 
and ridges (L≈20 m) we determined the e�ective (Newtonian) viscosity ratio between the upper layer (h=3 
m) and the main rockglacier body as R=21.

Buckle folding theory in a nutshell: Buckle 
folding is the mechanical response of layered 
viscous materials to layer-parallel compression. 
The wavelength (L) depends on the viscosity 
ratio (R) between the sti� (folded) and soft 
layer and on the thickness of the sti� layer (h).

 Fig. 4: Di�erential 
elevation calculated 
from a 1 m resolution 
DEM (Frehner et al., 
2015). We also use a 
drone-based 8 cm 
resolution DEM. The 
curved furrow-and- 
ridge morphology is 
clearly visible.
 Fig. 5: Borehole 
deformation data 
(Arenson et al., 2002) 
highlighting the 
curved �ow geometry 
above the basal shear 
zone at ~30 m depth.
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51 Introduction

( ) 1n m
xu y Bx Bx+= =

Flow of non-linear viscous materials leads to curved, but not perfectly parabolic �ow structures. Ideally, the 
power-law exponent of the curved �ow structures (m) is one unit larger than the power-law stress 
exponent of the non-linear rheological �ow law (n). Hence, the following relationship applies:

Rheological �ow law (Glen’s (1952) �ow law):
      Geometry of furrow-and-ridge morphology: 
      Horizontal borehole deformation with depth: 

Therefore, geometrical analysis of curved furrow-and-ridge morphology in map view (Fig. 4) and the 
curved borehole deformation data in vertical view (Fig. 5) should allow determinining the power-law 
exponent (n) governing the viscous �ow. Various assumptions and boundary conditions may be applied:
 In map view: consider the entire furrow-and-ridge structure or reject few meters on each side

In the borehole: include or reject the top 5 m and/or bottom few meters (shear zone)
 Fixed value(s) or or �xed gradient(s) at the end(s) of the structure (e.g., at the top of the borehole)

n Aτ ε= 

( ) 1n m
xu z Cz Cz+= =

τ ε

First results for borehole data6
So far, we analyzed two borehole curves (Fig. 6 & 7, Table 1). Considering the entire borehole, the 
power-law �t performs signi�cantly better (R2>0.92) than the quadratic �t  (R2<0.75) and we �nd 
power-law exponents of 5.14>m>7.30. Considering only the middle section of the borehole, all 
di�erent �tting curves perform equally well (R2>0.96) and we �nd power-low exponent close to m=2.

 Fig. 6 &  Fig. 7: Borehole deformation 
curves (Arenson et al., 2002) and �tting 
functions using di�erent boundary 
conditions.

 Table 1: Curve �tting details. Best �ts 
are obtained using power-law 
functions and �tting only the middle 
section of the borehole.
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7 First results for furrow-and-ridge geometry

 Fig. 8: Digitized curved ridges superimposed on the 8 cm DEM (hillshade). In this hillshade representation of 
the DEM the furrow-and-ridge morphology is particularly well visible, enabling digitalization.
 Fig. 9: Digitized ridges rotated and centered into a common x-y-coordinte system. Black: ridges on the NE side 
of the rockglacier; Blue: ridges on the SW side; Red: calculated average ridge geometry on the NE side.
 Fig. 10: Average NE ridge (red) with quadratic (black) and power-law �t (green). Both �ts work equally well.

References:

783.1 783.2 783.3

14
4.

6
14

4.
7

14
4.

8
14

4.
9 Digitized furrow-and-ridge morphology
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