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Geological folds in transpression are inherently 3D structures; hence their growth and rotation behavior is
studied using 3D numerical finite-element simulations. Upright single-layer buckle folds in Newtonianmaterials
are considered, which grow from an initial point-like perturbation due to a combination of in-plane shortening
and shearing (i.e., transpression). The resulting fold growth exhibits three components: (1) fold amplification
(vertical), (2) fold elongation (parallel to fold axis), and (3) sequential fold growth (perpendicular to axial
plane) of new anti- and synforms adjacent to the initial fold. Generally, the fold growth rates are smaller for
shearing-dominated than for shortening-dominated transpression. In spite of the growth rate, the folding behav-
ior is very similar for the different convergence angles. The two lateral directions always exhibit similar growth
rates implying that the bulk fold structure occupies an increasing roughly circular area. Fold axes are always

parallel to the major horizontal principal strain axis (λ
!

max, i.e., long axis of the horizontal finite strain ellipse),

which is initially also parallel to the major horizontal instantaneous stretching axis (ISA
�!

max). After initiation,

the fold axes rotate together with λ
!

max. Sequential folds appearing later do not initiate parallel to ISA
�!

max, but

parallel to λ
!

max, i.e. parallel to the already existing folds, and also rotate with λ
!

max. Therefore, fold axes do
not correspond to passive material lines and hingemigration takes place as a consequence. The fold axis orienta-

tion parallel to λ
!

max is independent of convergence angle and viscosity ratio. Therefore, a triangular relationship
between convergence angle, amount of shortening, and fold axis orientation exists. If two of these values are
known, the third can be determined. This relationship is applied to the Zagros fold-and-thrust-belt to estimate
the degree of strain partitioning between the Simply Folded Belt and the bordering strike-slip fault-system.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Transpression, or oblique convergence, is a common tectonic setting
at plate boundaries characterized by two components of relative plate
velocity (Sanderson andMarchini, 1984): one component is perpendic-
ular to the plate boundary (i.e., shortening component) and one compo-
nent is parallel to the plate boundary (i.e., strike-slip component).
Examples of transpressional tectonic settings can be found in oblique
subduction systems, such as on the South Island of New Zealand
(Teyssier et al., 1995; Toy et al., 2013), in Sumatra (Tikoff and Teyssier,
1994), or in the Argentinian and Chilean Andes (Lupi and Miller,
2014; Payrola et al., 2012), at restraining bends of strike-slip faults,
such as the Big Bend in the San Andreas Fault (Kellogg and Minor,
2005; Teyssier et al., 1995; Tikoff and Teyssier, 1994), and in continent-
continent collision zones, such as in parts of the Swiss Alps (Dewey
et al., 1998) or in the collision zone between the Arabian and Eurasian
continental plates. For the last mentioned tectonic system, the conver-
gence angle (angle between relative velocity vector and plate boundary)
decreases from 70° in the Caucasus area (Jackson, 1992) to 45° in the
western Iranian Zagros Simply Folded Belt (Vernant and Chéry, 2006)
and to 25° in the south-western Iranian Fars area (Sarkarinejad, 2007)
and the Sanandaj-Sirjan Zone (Mohajjel and Fergusson, 2000).

Transpression has been described in detail using kinematical
homogeneous-strain models (Fossen and Tikoff, 1993; Fossen et al.,
2013; Sanderson and Marchini, 1984). However, transpressional
systems can exhibit strain partitioning resulting in domains of simple-
shear dominated structures and domains of shortening-dominated
structures (see Talebian and Jackson, 2004 and Vernant and Chéry,
2006 for an application to the Zagros Mountains). The kinematical
homogeneous-strainmodels have been extended to such systems to in-
clude a heterogeneous (i.e., partitioned) strain distribution (Jones and
Tanner, 1995; Tikoff and Teyssier, 1994). However, Robin and Cruden
(1994) and later Dewey et al. (1998) demonstrated that transpressional
systems and related strain partitioning can lead to very complex folia-
tion and lineation patterns, which may not be explained by one single
kinematical model.

The present study focusses on folds developing in transpressional
tectonic settings. Geological folds are inherently 3D structures; hence
their growth ideally has to be investigated as a 3D process, which has
been done analytically (Fletcher, 1995, 1991; Ghosh, 1970; Mühlhaus
et al., 1998), in laboratory experiments (Abbassi and Mancktelow,
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1992; Zulauf et al., 2003), and numerically (Fernandez and Kaus,
2014; Frehner, 2014; Grasemann and Schmalholz, 2012; Kaus and
Schmalholz, 2006; Schmid et al., 2008). However, the vast majority
of such studies only considered uni- or bi-directional shortening
(co-axial) boundary conditions. Transpression has been studied far
less.

One of the major questions for folding studies in transpression is
how folds are oriented with respect to the background velocity vector.
It is generally agreed that during the earliest folding stages, the fold
axis initiates parallel to the major horizontal instantaneous stretching

axis, ISA
�!

max (Fossen et al., 2013; James and Watkinson, 1994; Tikoff
and Peterson, 1998; Treagus and Treagus, 1981). However, Fossen
et al. (2013) stated that: “Exactly how fold elements (axis, axial plane)
rotate after initiation is not clear”. A small number of analog laboratory
experiments investigated fold growth in transpression. Payrola et al.
(2012) mimicked oblique fold structures in northwestern Argentina in
transpressional analog experiments with a convergence angle of 55°;
yet the fold axis orientation was not tracked during deformation.
Casas et al. (2001) modeled general transpression (convergence angle
0°–90°) above a linear velocity discontinuity at the base of their model-
ing box. Folds developed due to passive bulging related to thrusts orig-
inating from this imposed discontinuity. Therefore, the folds were
always parallel to the discontinuity and no systematic study on fold ori-
entation was conducted. Leever et al. (2011) modeled a transpressional
system in Spitzbergen, which exhibits a convergence angle of 15°. They
also used a basal velocity discontinuity, yet their model was large
enough to allow folds to develop away from and independently of this
discontinuity. This allowed them to track the fold orientation during de-
formation and to identify a significant rotation of the fold axis after fold
initiation. However, they did not link this rotation to any kinematical
model. Similarly, Ghosh et al. (2014) observed fold axis rotation after
fold initiation, but also did not link it to a kinematical model. Tikoff
and Peterson (1998) modeled folds in general transpression with the
particular aim of tracking the fold axis orientation. They found that
the fold axis is always parallel to the major horizontal principal strain

axis, λ
!

max; that means it initiates in this direction and rotates together
with this orientation. At the same time, Grujic and Mancktelow (1995)
performed similar experiments, but only in simple shear (convergence
angle 0°), and found that the fold axis rotates as a passive line fixed
to the material. The findings of Tikoff and Peterson (1998) imply the
occurrence of hinge migration during deformation (i.e., the fold hinge
migrates through the material) while the findings of Grujic and
Mancktelow (1995) exclude hinge migration. Fossen et al. (2013) sug-
gested that: “More data from physical experiments, numerical modeling
and field observations are needed to further explore this question”. This is
the primary aim of this study.

The presented work is an extension and generalization of the
numerical modeling work presented in Frehner (2014), which only con-
sidered 3D folding under pure shortening (convergence angle 90°). After
the definition of 3D fold growth, the numerical model with its initial and
boundary conditions is outlined and themethods to track fold amplitudes
and orientations during deformation are explained. The results are divid-
ed into a fold orientation-independent part and a part particularly focus-
ing on the fold axis rotation and related hingemigration. In the discussion
section, the fold axis orientation data from the analog experiments of
Leever et al. (2011) is reevaluated and linked to the kinematical model
established before. This kinematical model is then applied to the Iraqi
Zagros fold-and-thrust-belt, which represents a natural transpressional
system, to estimate the degree of strain partitioning between the Simply
Folded Belt and the bordering strike-slip fault system.

1.1. Definition of fold growth in 3D

For transpression, the fold growth definitions in 3D given in
Frehner (2014) have to be slightly modified. Using the coordinate
system in Fig. 1, fold growth in 3D exhibits the following three
components:

• Fold amplification: Growth from a fold shape with low limb-dip angle
to a shape with larger limb-dip angle. In the presented cases, fold am-
plification corresponds to the growth in z-direction (vertical).

• Fold elongation: Growth parallel to fold axis from a dome-shaped
(3D) structure to a more cylindrical (2D) structure. In the case of
pure-shear background deformation, fold elongation corresponds to
the growth in x-direction.

• Sequential fold growth: Growth perpendicular to fold axial plane of
additional folds adjacent to the initial isolated fold. The initial fold is
termed the 0th sequential fold; later grown folds are numbered ac-
cordingly. In the case of pure-shear background deformation, sequen-
tial fold growth corresponds to the growth in y-direction.

2. Numerical method and setup

Buckle folding is assumed to be a quasi-static flow process in the
absence of gravity governed by incompressible Newtonian (linear
viscous) rheology. The corresponding continuummechanics equations
describing such flow behavior are described in Appendix A; their
discretization with the finite-element (FE) method is described in
Appendix B. The entire model is non-dimensionalized using three pre-
defined characteristic values:

• Characteristic length scale: Initial thickness of the top layer, HL

• Characteristic time scale: Inverse of background strain rate, 1= _εbg
• Characteristic viscosity scale: Viscosity of the lower (matrix) layer, ηM

Due to this non-dimensionalization, the obtained results may not
be translated one-to-one to natural cases, but must first be back-
dimensionalized using real values for the three characteristic scales.

2.1. Model setup and boundary conditions

The model setup and boundary conditions are depicted in Fig. 1.
The model is centered at (x = 0,y = 0) and consists of two layers,
an upper layer with higher viscosity (thickness HL = 1, viscosity ηL)
resting on top of a lower-viscosity (matrix) layer (thickness HM, viscos-
ity ηM = 1, viscosity ratio R = ηL/ηM). The thickness of the lower layer

is large enough to fall into the domain ofmatrix-controlled folding (HM
HL

≫
4
3 ð23RÞ

1=3; Schmalholz et al., 2002); hence the exact value ofHM does not
influence the results.

The following boundary conditions are applied to enforce general
transpression with convergence angle α (Fig. 1):

• Top boundary: Free surface boundary conditions.
• Bottom boundary: Non-moving free-slip boundary conditions
(i.e., zero traction, zero boundary-perpendicular velocity).

• All lateral boundaries: The velocity components in the x- and y-
directions are enforced according to

vx ¼ y _εbg cos αð Þ; ð1Þ

vy ¼ −y _εbg sin αð Þ; ð2Þ

where y represents the y-coordinate values of the corresponding
boundaries. Consequently, both velocity components are modified at
every time step during a simulation tomaintain the externally applied
constant background strain rate, _εbg ¼ 1 (a positive value). In the
z-direction, free slip boundary conditions are applied.

This set of boundary conditions corresponds to simple shear
(wrenching) with the shear plane perpendicular to the y-axis and the



Table 1
Translation from background strain (εbg) values given in Figs. 2, 3, and 8 to the lengths of

the minor (jλ!minj) and major (jλ!maxj) horizontal principal strain axes (rounded to two
digits after decimal point).

Convergence
angle

Fig. 3

1st snapshot 2nd snapshot 3rd snapshot

Fig. 8 Fig. 2

α = 0°
Simple shear

εbg = 17.3%

jλ!min j = 0.91

jλ!max j = 1.10

εbg = 30.6%

j λ!minj = 0.84

j λ!maxj = 1.20

εbg = 41.5%

j λ!min j = 0.77

j λ!max j = 1.30
α = 30° εbg = 7.7%

jλ!min j = 0.95

jλ!max j = 1.02

εbg = 14.4%

j λ!minj = 0.89

j λ!maxj = 1.04

εbg = 20.2%

j λ!min j = 0.85

j λ!max j = 1.06
α = 45° εbg = 6.3%

jλ!min j = 0.95

jλ!max j = 1.01

εbg = 11.8%

j λ!minj = 0.90

j λ!maxj = 1.02

εbg = 16.9%

j λ!min j = 0.86

j λ!max j = 1.03

εbg = 17.3%

jλ!min j = 0.85

jλ!max j = 1.03
α = 60° εbg = 5.8%

jλ!min j = 0.95

jλ!max j = 1.00

εbg = 10.4%

j λ!minj = 0.91

j λ!maxj = 1.01

εbg = 15.2%

j λ!min j = 0.86

j λ!max j = 1.01
α = 90°
Pure shear

εbg = 5.4%

jλ!min j = 0.95

jλ!max j = 1.00

εbg = 10.0%

j λ!minj = 0.91

j λ!maxj = 1.00

εbg = 14.0%

j λ!min j = 0.87

j λ!max j = 1.00

Fig. 1. Initial model setup, boundary conditions, and coordinate system used in this study. Themodel is centered at (x=0,y=0). The two-layer model comprises a top layer with higher
viscosity resting on a (matrix) layer with lower viscosity. Transpressional boundary conditions are applied at all lateral boundaries as a combination of boundary-perpendicular (black
arrows) and boundary-parallel (white arrows) velocity components; smaller arrows represent smaller applied velocity values. Gray levels represent the initial Gaussian topography
measured in per cent of the thickness of the top layer. The diminishing gray lines at the left edge of the model indicate progressive deformation of this edge in the case of general
transpression.
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shear direction parallel to the x-axis for α=0° (Frehner et al., 2011), to
pure shear (pure shortening) with shortening parallel to the y-axis and
extension parallel to the z-axis for α=90° (Frehner, 2014), and to gen-
eral transpression for a general convergence angle, 0° b α b 90°, which is
a combination of the two end-member cases. Exactly the same bound-
ary conditions are considered in Sanderson and Marchini (1984) and
Fossen et al. (2013) and mimicked in the analog experiments of Grujic
and Mancktelow (1995) and Tikoff and Peterson (1998). The conver-
gence angle also provides the orientation of the flow apophysis in top
view, which is not parallel to the shear plane (Fossen et al., 2013). The
kinematic vorticity number may be calculated as Wk = cos(α)
(Bobyarchick, 1986); yet, the convergence angle, α, is used throughout
this study.

A point-like initial perturbation, G, is superposed onto both the top
and bottom interface of the upper layer in the shape of a 2D Gaussian
(Fig. 1),

G ¼ A0 exp
x2

2σ2

� �
exp

y2

2σ2

� �
; ð3Þ

with a small initial amplitude of A0 = 0.01 (1% of the upper layer
thickness). This initial perturbation forces the mechanical folding insta-
bility to initialize and grow from the center of the model, which allows
quantifying fold growth in transpression away from any possible
boundary effects. The effective wavelength of the initial perturbation
is defined as

λ0 ¼ 2� FWHM ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2ð Þ

q
σ ; ð4Þ

where FWHM is the full width at half maximum of the 2D Gaussian.
According to Frehner (2014), the effective initial wavelength, λ0, is
equal to the dominant wavelength (Fletcher, 1991) by setting σ = 6
for R = 100 and by setting σ = 4 for R = 20; hence these values
(R = 100, σ = 6 and R = 20, σ = 4) are set constant in the presented
study.

2.2. Background strain measure

To compare simulations with different convergence angles, there is
no unique bulk strain measure for general transpression. Appendix C
presents some possibilities for measuring the bulk strain and discusses
their advantages and disadvantages. Based on these considerations,
the background strain, εbg, is proposed here as a global measure for all
convergence angles:

εbg ¼ 1− exp −t _εbg
� �

; ð5Þ

where t is time and _εbg is the externally applied background strain
rate. This background strain measure is used throughout the study.

However, Table 1 translates εbg-values to the lengths of the minor (j
λ
!

minj) and major (jλ!maxj) horizontal principal strain axes, respec-
tively. The former is the only other strain measure identified in

Appendix C as being suitable for all convergence angles. Here, λ
!

min

and λ
!

max are written as vectors, indicating that they represent
both a length (1 plus the strain value) and an orientation (the strain
axis orientation).

Image of Fig. 1
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2.3. Calculation of 3D fold amplitudes and fold axis orientation

From the FE-simulations, all three fold amplitudes are calculated
based on the z-coordinates of the folded upper interface of the top
layer (i.e., the model topography). Fig. 2 depicts the definitions of the
three fold amplitudes.

• The amplitude in z-direction (vertical), Az, is defined as themaximum
z-coordinate value above the mean model topography. Because
the model and the initial perturbation are centered at (x = 0,y = 0),
the amplitude in z-direction corresponds to the topography at the
model center.

• The amplitude parallel to the fold axis, Aǁ, corresponds to the distance
between the model center (i.e., locus of initial perturbation) and the
furthest point on the topographic contour line of the 0th sequential
fold (i.e., initial fold) at an absolute value of A0/2 measured along the
fold axis.

• The amplitude perpendicular to the axial plane, A⊥, corresponds to
the distance between the model center (i.e., locus of initial pertur-
bation) and the furthest point on a topographic contour line at an
absolute value of A0/2 measured along the normal vector to the
axial plane.

The initial values for the three amplitudes based on the initial
perturbation, G (Eq. (3)), are Az,ini = A0 and Aǁ,ini = A⊥,ini = λ0/4.
These initial values are used for normalizing the amplitude values in
the respective directions.

Equivalent to the bulk fold structure, amplitudes of the individual
sequential folds (i.e., individual anti- and synforms) are calculated. For
the ith sequential fold, these amplitudes are labeled Az,i, Aǁ,i, and A⊥,i.
Consequently, the following equalities apply: Az = Az,0 and Aǁ = Aǁ,0;
in words, the amplitudes in z-direction and parallel to the fold axis are
respectively the same for the bulk fold structure and for the 0th sequen-
tial fold (i.e., initial fold).

In addition, the orientation of the fold axis (i.e., angle relative to
x-axis) of both the bulk fold structure and of each individual sequential
Fig. 2. Example simulation snapshot in top view (x-axis to the right) to illustrate the
definitions of the three fold amplitudes. The selected snapshot corresponds to a model
with R = 100 and α = 45° after 17.3% background strain. Colors represent the model
topography above a reference level (i.e., zero mean topography); thin black contour
lines mark half the initial value (A0/2). Fold amplitude Az (vertical) corresponds to the
maximum elevation (indicated as a dot); fold amplitudes Aǁ (parallel to fold axis) and
A⊥ (perpendicular to axial plane) are defined by the lateral extent of the black contour
lines. In addition, the difference between the bulk fold structure and the individual se-
quential folds (individual syn- and antiforms) and their consecutive numbering is
indicated.
fold is calculated by fitting an ellipse to each topographic A0/2-contour
line and determining the orientation of its major axis.

2.4. Calculation of fold growth rates

In the infinitesimal-amplitude stage, folds grow exponentially with
time (e.g., Biot, 1961; Fletcher, 1991, 1977; Schmalholz, 2006). To
quantify the fold growth rates, this assumption is also used for the
finite-amplitude stagesmodeled in this study. However, in the present-
ed cases, this assumption only makes sense in the vertical direction
and parallel to the fold axis (see results below); hence the following
amplitude evolution laws are assumed:

Az ¼ Az;ini exp qz þ qz;k
� �

_εbgt
� 	

⇔ Az ¼ Az;ini 1−εbg
� �− qzþqz;kð Þ

; ð6Þ

A∥ ¼ A∥;ini exp q∥ þ q∥;k
� �

_εbgt
� 	

⇔ A∥ ¼ A∥;ini 1−εbg
� �− q∥þq∥;kð Þ; ð7Þ

where (qz+ qz,k) and (qǁ+ qǁ,k) are the total growth rates in the vertical
direction and parallel to the fold axis, respectively. These growth rates
consist of an active part (due to the mechanical buckling instability)
and a passive (kinematical; denoted with subscript k) part due to the
background strain field. In the vertical direction, the kinematical ampli-
fication rate reflects the pure-shear component of the applied boundary
conditions given as

qz;k ¼ sin αð Þ: ð8Þ

Parallel to the fold axis, the kinematical elongation rate can be deter-
mined from the elongatingmajor horizontal principal strain axis, which
results in

q∥;k ¼ sin2 45−α=2ð Þ: ð9Þ

The active fold growth rates, qz and qǁ, can then be obtained by fitting
Eqs. (6) and (7) to the corresponding amplitude evolution data.

3. Results

Fig. 3 shows a selection of simulation snapshots in top view. For all
convergence angles, the fold structure grows in all three directions
with increasing background strain. Fold amplification (vertical) leads
to increasing topography (indicated by color in Fig. 3), fold elongation
yields elongation of the topographic A0/2-contour lines parallel to the
fold axis, and sequential folds growth gives rise to new sequentially
appearing topographic contour lines.

Already from these simulation snapshots it is evident that the fold
growth rates in all three directions, as well as the ratios between the
three directions, depend on the convergence angle. For example, the
background strain necessary for the 3rd sequential fold to appear
(right snapshots in Fig. 3) is larger for smaller convergence angles;
hence sequential fold growth is slower for smaller convergence angles.
At the same time, the fold amplitude (vertical) at the moment the 3rd

sequential fold appears is smaller for smaller convergence angles,
while the elongation of the initial fold (0th sequential fold) is larger;
hence the ratio between fold amplification and fold elongation de-
creaseswith decreasing convergence angle. The 3D fold growth is inves-
tigated in further detail in the first sub-section below.

Also evident from the simulation snapshots (Fig. 3) is that the orien-
tation of the fold axis in top view is a function of the convergence angle.
The angle of the fold axis with respect to the x-axis is zero for pure shear
and increaseswith decreasing convergence angle. This is investigated in
further detail in the second sub-section below.

Image of Fig. 2


Fig. 3. Snapshots of selected numerical simulations (R=100) in top view (x-axis to the right). Snapshots from top to bottom correspond to different convergence angles given on the left
and indicated with gray arrows. Background strain, εbg, is increasing from left to right for each convergence angle and is given in each snapshot in %. Colors represent the vertical fold
amplitude (z-direction); thin black contour lines mark half the initial value (A0/2), which defines the individual sequential folds. The snapshots are chosen always immediately after
the first appearance of new sequential folds. The upper-right corner of each snapshot shows the horizontal strain ellipse with its major and minor axes. Consult Table 1 to translate

background strain (εbg) to the lengths of the minor (j λ!minj) and major (j λ!maxj) horizontal principal strain axes.
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3.1. 3D fold growth and lateral fold aspect ratio

Figs. 4 and 5 show the normalized fold amplitude evolution in all
three directions and the lateral fold aspect ratio (i.e., Aǁ/A⊥-ratio) for
the same five simulations as shown in Fig. 3 (R=100). At the beginning
of each simulation, all normalized fold amplitudes and the lateral fold
aspect ratio are equal to 1 representing the initial condition (Eq. (3)).
After that, the general fold growth is very similar for all convergence
angles, yet at different rates.

The initial isolated fold (0th sequential fold) grows in both the verti-
cal direction (increasing Az,0; thin solid line in Fig. 4) and parallel to the
fold axis (increasing Aǁ,0; thin dashed line). At the same time, the extent
perpendicular to the axial plane (A⊥,0; thin dotted line) is restricted
to the dominant wavelength, λ0 (Eq. (4)), and is actually slightly de-
creasing with increasing background strain (A⊥,0/λ0 b 1 in Fig. 4),
representing tightening of the fold. This demonstrates that perpendicu-
lar to the axial plane, the bulk fold structure does not grow as a single
individual fold but grows due to the appearance of new sequential
folds adjacent to the initial one.
When new sequential folds appear, they are already elongated (thin
lines in Fig. 5) and continue elongating (parallel to fold axis) and grow-
ing in the vertical direction; but again, their extent perpendicular to the
axial plane is restricted to the dominant wavelength (Fig. 4).

For the bulk fold structure, the amplitudes in the vertical direc-
tion (Az) and parallel to the fold axis (Aǁ) are the same as for the
initial isolated fold (0th sequential fold). Growth perpendicular to
the axial plane (A⊥; bold dotted line in Fig. 4) is marked by jumps
every time a new sequential fold appears and therefore the bulk
fold structure suddenly occupies more space (see also Fig. 3). Despite
these jumps, the average sequential fold amplitude (perpendicular
to the axial plane) is similar to the elongation of the fold (parallel
to the fold axis). Therefore, the lateral fold aspect ratio of the bulk
fold structure oscillates around a value of 1 (bold line in Fig. 5); for
small convergence angles, the bulk lateral fold aspect ratio tends to
be slightly above 1; for larger convergence angles, the bulk lateral
fold aspect ratio tends to be slightly below 1.

To quantify the initial fold growth rates, Eqs. (6) and (7) are fit to the
amplitude-vs.-time data of the 0th sequential fold equivalent to the first

Image of Fig. 3


Fig. 4. Fold amplitude evolution in all three directions of both the individual sequential folds (individual anti- and synforms; thin lines) and the bulk fold structure (bold dotted lines) for
the same simulations shown in Fig. 3 (R=100) with increasing background strain, εbg, and for different convergence angles (subfigures a–e). Parallel to the fold axis (Aǁ) and in vertical
direction (Az), amplitudes of the bulk fold structure are equal to the respective amplitudes of the initial fold (0th sequential fold). All amplitudes are normalized by their respective initial

value (Az ¼ Az=Az;ini, A∥ ¼ A∥=A∥;ini, A⊥ ¼ A⊥=A⊥;ini). Vertical gray dashed lines mark the first appearances of new sequential folds (i.e., snapshots in Fig. 3); sub-horizontal gray lines show
the kinematical growth in z-direction (solid gray lines) and parallel to the fold axis (dashed gray line). Note that all subfigures have the same vertical and horizontal scale and the legend in
a) is valid for all subfigures.
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10% of background strain shown in Fig. 4 (R = 100), as well as to the
equivalent data for other convergence angles not shown in Fig. 4 and
for a viscosity ratio of R = 20. The obtained initial fold growth rates in
the vertical direction and parallel to the fold axis are plotted in Fig. 6
as a function of convergence angle. Fold growth rates are significantly
lower for the lower viscosity ratio, as expected from theory (Fletcher,
1991). However, the general trend with convergence angle is indepen-
dent of viscosity ratio. Both growth rates increase with increasing con-
vergence angle, indicating that folds grow faster in pure shear than in
simple shear (also discernible in Fig. 3). In the vertical direction, this
dependency on convergence angle is stronger than it is parallel to the
fold axis; hence the ratio of fold amplification (vertical) to fold elonga-
tion (parallel to fold axis) also increases with increasing convergence
angle. For convergence angles larger than about 15°, fold amplification
exhibits a higher rate than fold elongation (Fig. 6). Only for cases close
to simple shear is fold elongation faster than fold amplification. The
rate of sequential fold growth is not quantified here because it exhibits
abrupt jumps and it is therefore not straightforward to fit Eqs. (6) and
(7) to the amplitude evolution data. However, Fig. 4 suggests that
the average rate of sequential fold growth is close to the rate of fold
elongation.

3.2. Fold axis orientation

Fig. 7 shows the evolution of the fold axis orientation in top view
(angle relative to x-axis) as a function of background strain and conver-
gence angle and for two viscosity ratios, R = 100 (Fig. 7a) and R = 20
(Fig. 7b). The initial perturbation is circular (Eq. (3)) and no fold orien-
tation can be determined. As soon as the fold starts growing, the fold
axis elongates in the direction of the major horizontal instantaneous

stretching axis (ISA
�!

max, given as 45°–α/2). This particular orientation
of folds at their initiation has been suggested by previous analytical
and modeling studies (Fossen et al., 2013; James and Watkinson,
1994; Tikoff and Peterson, 1998; Treagus and Treagus, 1981). With
increasing background strain, the fold axis rotates and stays parallel

to the major horizontal principal strain axis ( λ
!

max, i.e., long axis of
the horizontal strain ellipse).

Image of Fig. 4


Fig. 5. Evolution of the lateral fold aspect ratio (in top view; i.e., Aǁ/A⊥-ratio) of both the individual sequential folds (individual anti- and synforms; thin lines) and the bulk fold structure
(bold lines) for the same simulations shown in Fig. 3 (R = 100) with increasing background strain, εbg, and for different convergence angles (subfigures a–e). Vertical gray lines mark
thefirst appearances of new sequential folds (i.e., snapshots in Fig. 3); horizontal gray lines indicate the initial lateral fold aspect ratio (i.e., 1). Note that all subfigures have the same vertical
and horizontal scale, except subfigure a), which is vertically compressed by a factor of 2; the legend in a) is valid for all subfigures. This figure directly derives from the data
shown Fig. 4.
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When new sequential folds appear, their fold axes do not initiate

parallel to ISA
�!

max, but rather parallel to λ
!

max. In other words, sequential
folds initiate parallel to the already existing folds and continue rotating
together with them.

Because in the initial state, the major horizontal principal strain axis
is parallel to the major horizontal instantaneous stretching axis (

λ
!

max;ini ¼ ISA
�!

max), the general statement can be made that in the pre-
sented cases, fold axes are always oriented parallel to the major hori-

zontal principal strain axis, λ
!

max. They initiate in this orientation and

then rotate together with λ
!

max. Importantly, this statement is indepen-
dent of convergence angle and viscosity ratio. Viscosity ratio only affects
the rate at which folds grow but not their orientation.

3.3. Hinge migration

As the orientation of λ
!

max is not a material line, the fold axis being

parallel to λ
!

max implies hinge migration during fold growth. In other
words, fold hinges are not fixed to the material, but material migrates
through the fold hinge from one limb to the other. To visualize this,
Fig. 8 shows oblique views of the highest-strain snapshots for each con-

vergence angle shown in Fig. 3 together with the orientation of λ
!

max

(red line) and a passive material line initially parallel to ISA
�!

max (black

line). In all snapshots, the view direction is along ISA
�!

max (or λ
!

max;ini);
hence the misalignment of the black and red line with respect to the
view direction represents the passive rotation of the material line and

the rotation of λ
!

max, respectively.
From (Figs. 7 and 8) it is evident that during the early stages of fold-

ing, the fold axis exhibits a lower rotation rate than the passive material
line. As a consequence,material between the red and black lines in Fig. 8
has migrated through the fold hinge; material immediately on the op-
posite side of the red line compared to the black line will migrate
through the fold hinge with further background strain. In other words,
the fold hinge migrates through the material and is not a fixed material
line. This hinge migration is more marked for smaller convergence

angles and disappears completely for pure shear, where λ
!

max is parallel

to ISA
�!

max throughout the simulation.

Image of Fig. 5


Fig. 6. Active growth rate in vertical direction (qz, bold solid lines) and parallel to the fold
axis (qǁ, bold dashed lines) of the 0th sequential fold (initial fold) during the earliest folding
stage as a function of convergence angle and for two viscosity ratios, R=100 (black lines)
and R = 20 (gray lines). Also shown are the kinematical growth rates in both directions,
qz,k and qǁ,k, as well as the sum of the kinematical and the active growth rates. To
calculate the total growth rates, an exponential curve is fit to the respective amplitude-
vs.-time data equivalent to the first 10% of background strain in Fig. 4 (for R = 100) and
to the equivalent data (not shown here) for R = 20.
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4. Discussion

Simplified test cases have been presented to investigate first-order
phenomena of 3D folding in transpression. The simplifications lie in
the linear viscous (Newtonian) rheology, the two-layer model setup,
the relatively small applied background strain, and the absence of
surface processes and gravity. From 2D analytical studies it is known
that incorporating gravity decreases the fold amplification rate (verti-
cal) (Schmalholz et al., 2002). Surface processes (erosion of antiforms,
deposition in synforms) increase the fold amplification rate (Collignon
et al., 2014; Simpson, 2004). In addition, Collignon et al. (2014) used
a fully 3D coupled mechanical-surface processes numerical model
to show that surface processes do not significantly alter the lateral
Fig. 7. Evolution of fold axis orientation in top view (anglewith respect to x-axis) of all individu
strain, εbg, for different convergence angles (from α = 0°, simple shear to α = 90°, pure shear
sequential folds have virtually the same orientation as the preceding ones; hence the data a
areas outline the theoretical range of fold axis orientation for each convergence angle after (

strain axis ( λ
!

max); bottom edges indicate the orientation of a passive material line initial
background strain is shown because folds grow at a lower rate.
fold aspect ratio and the general fold pattern in pure shear (α = 90°).
Yamato et al. (2011) used a 2D visco-elasto-plastic multilayer model
to simulate folding in the Zagros fold-and-thrust-belt. They obtained
periodic folding with similar amplification rate curves as for Newtonian
single-layermodels. These results suggest thatmore complicated rheol-
ogies, multilayer settings, and surface processes may alter fold growth
rates, but not the fundamental folding mechanisms. Therefore, the key

observations in this study, such as the fold axis rotation with λ
!

max or
the almost constant lateral fold aspect ratio of 1, are expected to still
hold for natural fold structures.

4.1. Active versus passive 3D fold growth

In the vertical direction, kinematical extension due to the back-
ground strain field contributes to the amplification of the fold. There-
fore, the total amplification rate, qz + qz,k, presented in Fig. 6 (thin
solid lines) incorporates both the active amplification (due to the
mechanical buckling instability, qz) and the passive (kinematical, qz,k)
amplification. The latter is maximal for pure shear, where it is equal to
1 (e.g., Biot, 1961), and zero for simple shear (Eq. (8)), for which no
kinematical vertical extension occurs. In any case, the active amplifica-
tion significantly outpaces the kinematical one (Fig. 6).

Similarly, kinematical extension due to the background strain field
also contributes to fold elongation (parallel to fold axis). The kinemati-
cal contribution corresponds to the elongation of the horizontal strain

ellipse, which is displayed in Fig. 3 and whose long axis, jλ!maxj, is listed
in Table 1. The corresponding kinematical elongation rate, qǁ,k (Fig. 6), is
maximal for simple shear, where it is equal to 0.5 (Eq. (9)), and zero for
pure shear, forwhich the horizontal strain ellipse is not extended. In any
case, the active fold elongation significantly outpaces the kinematical
one. This is confirmed by comparing the strain ellipses and the lateral
fold aspect ratio in Fig. 3 for a viscosity ratio of R=100,where the latter
outpaces the former. Perpendicular to the axial plane, the direction of
sequential fold growth coincides with the orientation of the minor hor-

izontal principal strain axis, λ
!

min (Fig. 3). In otherwords, sequential fold
growth has to work against the background strain field. All in all, this
demonstrates that fold growth in the two lateral directions is predomi-
nantly an active process due to the mechanical buckling instability.

Even though the 3D growthof a fold structure is causedby one single
background strain field, the mode of growth in all three directions
al sequential folds (individual anti- and synforms; black lines) with increasing background
) and for two different viscosity ratios, R = 100 (a) and R = 20 (b). Note that subsequent
re hardly distinguishable even though the data for all sequential folds are plotted. Gray
Fossen et al., 2013); top edges indicate the orientation of the major horizontal principal

ly parallel to the major horizontal instantaneous stretching axis (ISA
�!

max). In b) more

Image of &INS id=
Image of Fig. 7


Fig. 8.Oblique view (20 times vertically exaggerated) of the snapshots shown in Fig. 3 (R=100) at the respective largest background strain (indicated in each panel) of each convergence

angle (indicated on the left). The view direction is always along the major horizontal instantaneous stretching axis (ISA
�!

max). The bold black line indicates the orientation of a material
line that was initially parallel to the view direction and has passively rotated away from this orientation; the bold red line indicates the orientation of the major horizontal principal

strain axis (λ
!

max; i.e., fold axis).
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is quite different. In the two lateral directions, the growing fold struc-
ture incorporates more and more material further and further away
from the initiation point while growth in the vertical direction (fold
amplification) does not incorporate additional material with increasing
deformation.

4.2. Rotation of fold axis and comparison with Leever et al. (2011)

The initial fold in transpression has a fold axis parallel to ISA
�!

max (or

λ
!

max;ini ; Fig. 7). It has been debated how this fold axis rotates with
increasing deformation. Grujic and Mancktelow (1995) and model 1
of Fossen et al. (2013) suggested that the fold axis is fixed to a material
line and rotates passively; Tikoff and Peterson (1998) and model 2 of
Fossen et al. (2013) suggested that the fold axis rotates actively and

stays parallel to λ
!

max. The presented results indicate that the latter
model is correct, which also implies hingemigration during progressive
deformation in transpression. Grujic andMancktelow (1995) used non-
linear viscous analogmaterials (paraffinwax)with an effective viscosity
ratio of R≈ 600 and a power-law stress exponent of 2.4–2.7. However,
the difference in material properties compared to the presented study
is not sufficient to explain the fundamental difference in results. The
reason why in the analog models of Grujic and Mancktelow (1995)
the fold axis was fixed to the material and did not migrate (N.S.
Mancktelow, personal communication) may be that the employed
paraffin wax did not exhibit pure viscous rheology, but also behaved
slightly brittlely. When the fold amplifies during the early experimental
stages, micro-cracks may develop where the curvature is largest, which

is along the initial fold axis parallel to ISA
�!

max. Therefore, the material

is strongly weakened along ISA
�!

max, which prohibits the migration of
the fold axis with increasing deformation and the fold rotates passively
as a material line.

Whether these observations are also applicable to transtension
remains to be studied in the future. However, the analog experiments
of Venkat-Ramani and Tikoff (2002) suggest that also in transtension

the fold axis initializes parallel to ISA
�!

max and then rotates and stays

parallel to λ
!

max; hence model 2 of Fossen et al. (2013) would also be
the correct choice in transtension.

To test if also in a real-world situation the fold axis initiates parallel

to λ
!

max and then rotates actively to stay parallel to this orientation, the
data of Leever et al. (2011) is used. They present data of the progressive
rotation of a fold hingewith increasing deformation in a transpressional
analog model with a convergence angle of α = 15°. Fig. 9 shows this

data together with the theoretical curves for the orientation of λ
!

max

(i.e., the theoretical fold axis orientation) and of a passive line initially

parallel to ISA
�!

max . Leever et al. (2011) measure the displacement
applied at the boundaries of their model in absolute units (cm) and
not in dimensionless units, such as εbg. Therefore, εbg is translated to
these absolute units using either side length of their modeling box as
the reference length (Fig. 3 in Leever et al., 2011); hence two slightly

Image of Fig. 8


Fig. 9. Data of Leever et al. (2011) of the progressively rotating fold axis in a
transpressional analog experiment (black diamonds) together with theoretical fold axis

orientations,λ
!

max (dark gray lines) and passive line initially parallel to ISA
�!

max (dashed
light gray lines). Both axes have the same units as in Leever et al. (2011). Because they
use absolute units (cm) for the externally applied displacement, the non-dimensional
background strain, εbg, is translated to these absolute units using either of the two side
lengths of the modeling box of Leever et al. (2011) as the reference length (60 cm,
lower lines or 52 cm, upper lines). Leever et al. (2011) state that folding initiates after
10.3 cm external displacement; hence the theoretical curves are plotted from this
initiation point. A fold axis orientation of 142.5° corresponds to the orientation of

ISA
�!

max.

Fig. 10. Fold axis orientations plotted versus kinematic strain estimates of anticlines in the
NW Zagros Simply Folded Belt (ZSFB; NE Iraq). Orientation data are taken directly from
Reif et al. (2011), Reif et al. (2012), and Zebari and Burberry (2015) or are estimated
from maps provided in these three publications; shortening estimates are taken directly
from Frehner et al. (2012) and Reif et al. (2011) or are calculated based on the cross-
section provided in Zebari and Burberry (2015). In the background, the theoretical fold

axis orientation, λ
!

max, is plotted for different convergence angles. End-member conver-
gence angles are sketched on the right based on the far-field shortening direction and
strike-slip fault orientation; they are 90° (pure shear) for full strain partitioning and 35°
for zero strain partitioning.
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different theoretical curves are obtained. In Leever et al. (2011), folding
initiates only after an initial phase of distributed strain, which accom-
modates 10.3 cm of externally applied displacement. Therefore, the
theoretical curves are only plotted after fold initiation. The theoretical

fold orientation curves ( λ
!

max ) almost perfectly match the analog
modeling data (Fig. 9) while the orientation of the passive line does
not fit the data well. This confirms that folds initiate and stay parallel

to λ
!

max. Interestingly, Leever et al. (2011) only plot the fold orientation
after quite substantial external displacement (long after initiation;
supposedly only after they could identify the fold safely). Consequently,
the fold axis orientation at their lowest-displacement data point is not

parallel to ISA
�!

max (142.5°), but the fold axis has already rotated unno-

ticed together with λ
!

max.

4.3. Application to the NW Zagros Simply Folded Belt

For natural folds, it is hardly possible to track the fold axis orienta-
tion over geological time scales. However, the presented study together
with the excellent fit of the data of Leever et al. (2011) gives confidence

that also natural fold axes are oriented parallel to λ
!

max. Hence there
is a triangular relationship between convergence angle, α, amount
of background strain, εbg (or any other strain measure), and fold axis
orientation. Theoretically, if two of these values are known, the third
can be determined.

To illustrate this, fold axis orientation data of the north-westernmost
Zagros Mountains (NE Iraq) are considered in Fig. 10. In this area, the
Zagros Simply Folded Belt (ZSFB) is bounded in the North-East by the
Main Zagros Thrust (MZT) and the Main Recent Fault (MRF) striking
about 145° (Zebari and Burberry, 2015; Reif et al., 2012, 2011). The
far-field shortening direction has been inferred from GPS measure-
ments as almost perfectly north–south (i.e., 180°; Vernant and Chéry,
2006) leading to a far-field convergence angle of α= 35°. The shorten-
ing is partitioned between the ZSFB and the MZT-MRF-fault system,
whereas the latter exhibits a right-lateral strike-slip component.
However, there has been some dispute about the amount of strain
partitioning in the Zagros Mountains. Based on earthquake focal mech-
anisms, Talebian and Jackson (2004) proposed full partitioning imply-
ing that 100% of the far-field strike-slip component is accommodated
by the MZT-MRF-fault system and the ZSFB experiences pure shorten-
ing with a convergence angle of α = 90° (upper sketch in Fig. 10). The
other end-member case – zero strain partitioning – implies that the
MZT-MRF-fault system does not accommodate any strike-slip move-
ment and the ZSFB experiences oblique convergence with a conver-
gence angle equal to the far-field one (i.e., α = 35°; lower sketch in
Fig. 10). However, this model is unrealistic because some strike-slip
movement along the MZT-MRF-fault system has clearly been docu-
mented (Talebian and Jackson, 2002). Based on Masson et al. (2005),
Vernant and Chéry (2006) proposed an intermediate strain partitioning
model, in which only a part of the far-field strike-slip component is
accommodated by the MZT-MRF-fault system, leaving the ZSFB with a
convergence angle of α = 60°.

Fig. 10 shows the fold axis orientation of various anticlines of the
ZSFB in NE Iraq plotted versus the kinematical shortening estimates.
The latter are determined from restored geological cross-sections per-
pendicular to the fold axis orientation (Zebari and Burberry, 2015;
Frehner et al., 2012; Reif et al., 2012, 2011); hence they correspond to
pure-shear shortening, εps (Appendix C), and not to background strain,
εbg, as for example in Fig. 7. Fig. 10 also shows the theoretical fold axis

orientation, λ
!

max, for different convergence angles. Despite some data
scatter, the orientation of the majority of fold axes indicates a conver-
gence angle within the ZSFB of α = 60°–90° confirming the proposed

Image of &INS id=
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range of Vernant and Chéry (2006) (α=60°) and Talebian and Jackson
(2004) (α=90°). However, the data covers this entire range of conver-
gence angles; hence it is not clear which end-member model is more
appropriate.

There are two main factors influencing the presented data. First,
the observed folds in the ZSFB may not be individual structures
growing from one point in all three directions, but they may be the
result of lateral linkage of several folds growing towards each other
(Grasemann and Schmalholz, 2012; Bretis et al., 2011). Such fold
linkage can lead to crooked fold hinges that do not align with the the-
oretical fold axis orientation. Second, the influence of basement
structures in the NW ZSFB is not clear. Folds may develop above
basement faults as fault-propagation folds or fault-bend folds. In
this case, the fold orientation is inherited from the basement struc-
ture, which does not necessarily follow the theoretical fold axis
orientation.

5. Conclusions

The presented numerical models of 3D fold growth in transpression
show that the rate of fold growth is significantly different for different
convergence angles. In all three directions, the fold growth rate
increases with increasing convergence angle (i.e., folds grow faster in
pure shear than in simple shear). Despite the different rates, the general
growth behavior is very similar for different convergence angles (see
also Frehner (2014) for pure shear). For all convergence angles, the
two lateral fold growth rates are similar, resulting in a lateral fold aspect
ratio close to 1; hence the bulk fold structure occupies a continuously
growing roughly circular area. The orientation of the fold axis is always

parallel to themajor horizontal principal strain axis, λ
!

max, independent
of convergence angle and viscosity ratio, confirming the findings of
Tikoff and Peterson (1998); the fold initiates in this direction and
rotates to stay parallel to this orientation. In other words, the fold
hinge is not a passive line fixed to the material; hinge migration takes
place as a consequence.

There is a triangular relationship between convergence angle,
amount of strain, and fold axis orientation, which is independent of
viscosity ratio. In natural situations, this relationship can be used to
estimate one of these values if the other two are known. On a large
scale, strain in transpression may be partitioned (Jones and Tanner,
1995) between simple-shear dominated (e.g., strike-slip faults) and
pure-shear dominated systems (e.g., fold-and-thrust belt). Therefore,
the convergence angle associated with folding may be significantly
smaller than the obliquity of the background convergence (which
may be known from GPS measurements). Fold axis orientations in
transpressional systems may be assumed parallel to the orientation
of the major horizontal principal strain axis and the fold amplitudes
in all three directions may be used to estimate the background
strain. With this information, the above-mentioned triangular rela-
tionship can be used to estimate the convergence angle associated
with the observed fold structures and hence infer the strain partitioning
ratio.
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Appendix A. Continuum mechanics equations

Buckle folding is assumed to be a slow flow process governed by
incompressible Newtonian (linear viscous) rheology. The continuum
mechanics equations describing such flow behavior comprise the con-
servation of linear momentum (i.e., force balance),

∂σxx

∂x
þ ∂σ xy

∂y
þ ∂σ xz

∂z
¼ 0

∂σyx

∂x
þ ∂σyy

∂y
þ ∂σyz

∂z
¼ 0

∂σ zx

∂x
þ ∂σ zy

∂y
þ ∂σ zz

∂z
¼ 0

; ðA1Þ

the conservation of angular momentum, expressed as

σ ij ¼ σ ji; ðA2Þ

the rheological (constitutive) equation,

σ ij ¼ 2η _εij−δij pþ 2η
_εxx þ _εyy þ _εzz

3

� �
; ðA3Þ

the kinematical relationship,

_εij ¼
1
2

∂vi
∂ j

þ ∂vj

∂i

� �
; ðA4Þ

and the incompressibility condition (vanishing divergence of the veloc-
ity field),

∂vx
∂x

þ ∂vy
∂y

þ ∂vz
∂z

¼ 0: ðA5Þ

In Eqs. (A1)–(A5), σij are the six independent components of the
stress tensor, x, y, and z are the three Cartesian coordinate directions
(Fig. 1), η is the dynamic viscosity, _εij are the six independent compo-
nents of the strain rate tensor, δij is the Kronecker delta, p is the pressure
(i.e., negative mean normal stress), and vx, vy, and vz are the three com-
ponents of the velocity vector. Subscripts i and j do not imply Einstein
summation but are placeholders for x, y, and z. Note that in Eq. (A1)
no gravity and no inertia terms are used and that Eq. (A3) represents
a linear relationship between stress and strain rate (i.e., Newtonian
rheology).

Appendix B. Numerical finite-element method

Eqs. (A1)–(A5) are discretized using thefinite-element (FE)method.
The particular self-developed numerical code has been introduced in
Frehner (2014) and corresponds to a 3D-extension of the 2D codes ex-
plained and benchmarked in Frehner and Schmalholz (2006), Frehner
(2011), and Frehner and Exner (2014). An equivalent code has been
used in Schmalholz (2008) and Reber et al. (2010).

Discretization is done by applying a Galerkin approach on a mixed
velocity–pressure-penalty formulation of the continuum mechanics
equations (Hughes, 2000). The penalty approach is coupled with an
Uzawa-type iteration (Pelletier et al., 1989) to ensure incompressibility.
The numerical Lagrangian (i.e., deformable) grid consists of iso-
parametric hexahedral Q27/4-elements (Zienkiewicz and Taylor,
2000) with continuous quadratic shape functions for the velocity
degrees of freedom and discontinuous linear shape functions for the
pressure degrees of freedom. The numerical grid is set up in such a
way that physical interfaces do not cross elements; hence no interpola-
tion is necessary. In other words, interfaces between different material
phases (two layers in the presented cases) coincide with element
boundaries. A numerical integration scheme on 27 Gauss-Legendre
quadrature points (Bathe, 1996) without any remeshing has been
found to be sufficient for the relatively small strains obtained in the pre-
sented simulations. The code has successfully been benchmarked
against the analytical thick-plate folding solution of Fletcher (1991).
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Appendix C. Measures for applied background strains

For general transpression, there is no uniquemeasure for the applied
bulk strain suitable for all convergence angles. Fossen et al. (2013)

proposed two different measures: the lengths of the minor (jλ!minj)
and major (jλ!maxj) horizontal principal strain axes, respectively (see
Figs. 4 and 7 in Fossen et al. (2013)). The first is a suitable global mea-
sure valid for all convergence angles (Fig. A1a); it may be translated to

an effective bulk shortening as εmin ¼ 1−jλ!minj. Equivalently, jλ
!

maxj
may be translated to an effective bulk extension as εmax ¼ jλ!maxj−1.
Fig. A1. Various strainmeasures plotted versus progressive time for different convergence
angles from 0° (simple shear) to 90° (pure shear).
However, the latter remains constant during deformation for a conver-
gence angle of α= 90° (pure shear, Fig. A1b); hence it does not qualify
as a global strainmeasure. Amore suitablemeasure for the applied bulk
strain may be the strain axis ratio,

Rλ ¼
λ
!

max




 



λ
!

min




 


 : ðC1Þ

For the relatively small strains obtained in this study and for the
different convergence angles, Rλ develops almost identically to the
pure-shear case (Fig. A1c), namely

Rλ ≈ exp t _εbg
� �

; ðC2Þ

which would make it an obvious choice for measuring the global bulk
strain. However, the drawback is that a certain strain axis ratio does

not reveal if it is due to an increase of jλ!maxj or a decrease of jλ!minj.
Another possibility is to use the pure-shear component (in

y-direction) of the bulk strain given as

εps ¼ 1− exp − sin αð Þt _εbg
� 	

: ðC3Þ

The drawback of this measure is that for a convergence angle of
α= 0° (simple shear) it remains zero during deformation (Fig. A1d).
Alternatively, the simple-shear component of the bulk strain may be
used, given as the shear angle

ψ ¼ tan−1 cos αð Þt _εbg
� 	

: ðC4Þ

Similar to above, the drawback of this measure is that for a conver-
gence angle of α=90° (pure shear) it remains zero during deformation
(Fig. A1e). However, for the relatively small strains obtained in the pre-
sented simulations, Eq. (C3) for pure shear (i.e., sin(α= 90°) = 1) and
Eq. (C4) for simple shear (i.e., cos(α= 0°) = 1) yield almost identical
Fig. A2. Simple-shear angle, Ψ (Eq. (C4)), for simple shear (α = 0°) plotted versus pure-
shear shortening component, εps (Eq. (C3)) for pure shear (α = 90°). The inset shows
the entire spectrum of possible values; the main figure shows the range of strains
obtained in this study, for which the two measures are almost identical.

Image of Fig. A1
Image of Fig. A2
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values (Fig. A2). Therefore, the global background strain measure for all
convergence angles is proposed here as

εbg ¼ 1− exp −t _εbg
� �

; ðC5Þ

where the background strain rate, _εbg, is a pre-defined value (i.e., _εbg ¼ 1).
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