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a b s t r a c t

Parasitic folds are typical structures in geological multilayer folds; they are characterized by a small
wavelength and are situated within folds with larger wavelength. Parasitic folds exhibit a characteristic
asymmetry (or vergence) reflecting their structural relationship to the larger-scale fold. Here we
investigate if a pre-existing geometrical asymmetry (e.g., from sedimentary structures or folds from a
previous tectonic event) can be inherited during buckle folding to form parasitic folds with wrong
vergence. We conduct 2D finite-element simulations of multilayer folding using Newtonian materials.
The applied model setup comprises a thin layer exhibiting the pre-existing geometrical asymmetry
sandwiched between two thicker layers, all intercalated with a lower-viscosity matrix and subjected to
layer-parallel shortening. When the two outer thick layers buckle and amplify, two processes work
against the asymmetry: layer-perpendicular flattening between the two thick layers and the rotational
component of flexural flow folding. Both processes promote de-amplification and unfolding of the pre-
existing asymmetry. We discuss how the efficiency of de-amplification is controlled by the larger-scale
fold amplification and conclude that pre-existing asymmetries that are open and/or exhibit low
amplitude are prone to de-amplification and may disappear during buckling of the multilayer system.
Large-amplitude and/or tight to isoclinal folds may be inherited and develop type 3 fold interference
patterns.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Parasitic folds are very characteristic features in geological
multilayer buckle folds and are treated in almost every traditional
and modern structural geology text book (Fossen, 2010; Price and
Cosgrove, 1990; Ramsay and Huber, 1987; Twiss and Moores,
2007). During polyharmonic folding (Ramsay and Huber, 1987),
different wavelengths are established by layers of different thick-
nesses (according to Biot's dominant wavelength theory;
Adamuszek et al., 2013; Biot, 1961; Fletcher, 1977) resulting in folds
with smaller wavelength situated within folds with larger wave-
length. The folds with smaller wavelength are termed parasitic
folds or second-order folds (as opposed to the first-order folds with
larger wavelength).

Parasitic folds develop simultaneously with the larger fold;
hence they share the same (or similar) fold axis orientation and
, ETH Zurich, Sonneggstrasse
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axial plane orientation as the larger fold. This similarity of style and
attitude of different fold orders are known as the Pumpelly's rule
that emphasizes the “general parallelism which exists between the
minute and general structure”, an observation that Pumpelly et al.
(1894) made in the Green Mountains in Massachusetts. As a
result, parasitic folds exhibit a characteristic asymmetry (or fold
vergence), often referred to as S- and Z-shape on either limb of the
larger fold and symmetric M-shape close to the hinge of the larger
fold. Until De Sitter (1958) introduced the term parasitic fold, such
second-order folds were also referred to as drag folds (Ramberg,
1963; Williams, 1961).

The development of parasitic folds has been studied analytically
(Hunt et al., 2001; Ramberg, 1964, 1963; Treagus and Fletcher,
2009), as well as in analog (Ramberg, 1964, 1963) and numerical
models (Frehner and Schmalholz, 2006). All these studies agree
that parasitic folds develop by a combination of buckle folding on
two different length scales. When a multilayer stack experiences
layer-parallel shortening, all layers start to buckle; but the thin
layers develop finite amplitudes prior to the thicker layers and
develop short-wavelength symmetric folds (Frehner and
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Fig. 1. Sketch (not to scale) of the 2D numerical model setup. A 3-layer system is
intercalated with a background matrix of low viscosity. The distance between the two
outer layers is equal to their individual thickness, H0. The central layer with a 10-times
smaller thickness, h0, is sandwiched between them. The zoom shows the initial
asymmetry of the central layer with the initial skew angle aini. Note that the x-axis
origin is located in the model center.
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Schmalholz, 2006). These folds are then sheared into an asym-
metric geometry (S- and Z-folds; following Pumpelly's rule) on the
limbs of larger-wavelength folds, which develop finite amplitudes
slightly later. In the hinge area of these larger folds, shearing is less
marked and the parasitic folds remain symmetric (M-folds; Frehner
and Schmalholz, 2006). Even studies not specifically focusing on
the development of parasitic folds reproduced this two-stage
development in multilayer folds (Schmalholz and Schmid, 2012).

Pumpelly's rule seems to be axiomatic. Van der Pluijm and
Marshak (2004) wrote: “In any case, remember that a pattern of
fold vergence opposite to that in Figure 10.16 (a “Christmas-tree” ge-
ometry) cannot be produced in a single fold generation (Figure 10.17).
In fact, this geometry is diagnostic of the presence of at least two fold
generations.” Indeed, an alleged wrong fold vergence in geological
field studies is usually used to argue for two distinct tectonic
folding phases. For example, Froitzheim et al. (1994) observed folds
on the decameter-scale in the Silvretta nappe (Austroalpine base-
ment; SE Switzerland) that have the wrong vergence for their po-
sition within the Ducan synform and Pleuger et al. (2008) observed
outcrop-scale folds in the Monte Rosa nappe (Middle Penninic
basement; NW Italy) that have the wrong vergence for their posi-
tion within the Vanzone antiform. In the first case, Froitzheim et al.
(1994) interpreted the observed folds to originate from an earlier
deformation phase than the larger-scale synform; in the second
case, Pleuger et al. (2008) interpreted the observed folds to be
younger than the larger-scale antiform. Similarly, Duncan (1984)
interpreted minor folds with wrong vergence in the Thor-Odin
gneiss dome (Shuswap metamorphic complex, Canadian Cordil-
lera) to originate from a later deformation phase than the larger-
scale Pingston fold.

Harrison and Falcon (1934) demonstrated that orogen-
perpendicular gravitational collapse can result in a wrong vergence
of second-order folds. However, this explanation was suggested for
massive limestone formations and is not applicable to the examples
above. Llorens et al. (2013b) demonstrated that higher-viscous layers
oriented obliquely in a ductile shear zone can develop different
vergences during a single simple-shear deformation event or even
unfold completely while other layers remain folded. However, their
numerical simulations mimic ductile shear zones and not smaller-
scale parasitic folds within a larger-scale fold structure and are
therefore not directly applicable to the problem at hand.

Herewe present a feasibility study to investigate if second-order
folds with wrong vergence can occur in multilayer buckle folds
generated during only one single deformation phase. In particular,
we test if a pre-existing small-scale asymmetry in the multilayer
stack (e.g., from non-planar sedimentation and diagenesis) can
survive the buckling process and can therefore be inherited as an
asymmetric fold with wrong vergence. To test this, we apply a 2D
finite-element model to simulate multilayer buckle folding of
Newtonian materials.

2. Numerical method and setup

We use the same numerical model that has been explained in
detail and successfully benchmarked in Frehner and Schmalholz
(2006) and Frehner (2011). The method is based on the finite-
element spatial discretization method (Zienkiewicz and Taylor,
2000) using triangular T7/3 isoparametric elements (Cuvelier
et al., 1986). The model solves the Stokes equations in 2D plane-
strain formulation in the absence of gravity coupled with an
incompressible linear viscous (Newtonian) rheology; hence we
model the slow viscous deformation governing buckle folding. We
use perfectly body-fitting Lagrangian meshes, which allow
modeling sharp viscosity jumps across interfaces between indi-
vidual layers of the multilayer stack (Deubelbeiss and Kaus, 2008).
2.1. Model setup

The initial model setup and boundary conditions are depicted in
Fig. 1 and detailed values for the model setup are provided in
Table 1. The model consists of three high-viscosity layers (viscosity
hL) intercalated with a low-viscosity matrix (viscosity hM). The two
outer layers have equal thickness, H0, and a distance to each other
of also H0. Sandwiched between them, the third layer is ten times
thinner (thickness h0 ¼ 0.1 � H0). All model dimensions are
normalized using the thickness of the thick layers (i.e., H0 ¼ 1); all
model viscosities are normalized using the matrix viscosity (i.e.,
hM ¼ 1) (Table 1).

To initiate buckling of the two thicker layers, we impose a si-
nusoidal initial geometry on their interfaces according to

yiðxÞ ¼ �Aouter sin
�
2px
ld

�
þ ci; (1)

where yi(x) is the y-coordinate (as a function of the x-coordinate) of
the ith interface (i.e., bottom and top interface of the bottom and
top thick layer), Aouter is the amplitude of the sinusoidal geometry,
and ci is a constant value chosen for each interface such that the
layers have the desired thickness and distance to each other. The
wavelength of the sinusoidal initial geometry, ld, corresponds to
the dominant wavelength of the two-layer system (i.e., neglecting
the thin central layer) according to Schmid and Podladchikov
(2010):

ld ¼ 2pH0

�
2hL
6hM

�1=3
: (2)

Note that the x-axis origin is located at the inflexion point of the
outer thick layers (Fig. 1) to be consistent with Equation (1) and the



Table 1
Parameters used to set up the numerical simulations.

Description Parameter and value

Thickness of outer layers H0 ¼ 1 (value for normalizing lengths)
Viscosity of matrix hM ¼ 1 (value for normalizing viscosities)
External horizontal strain rate _εbg ¼ �1 (value for normalizing strain rates)
Thickness of central layer h0 ¼ 0.1
Viscosity of higher-viscosity layers hL ¼ 100 (Figs. 2e9 and 11)

hL ¼ 20 (Fig. 10)
Resulting dominant wavelength ld ¼ 20.2 (for hL ¼ 100; Figs. 2e9 and 11)

ld ¼ 11.8 (for hL ¼ 20; Fig. 10)
Initial amplitude of outer layers Aouter ¼ 10�4 (for hL ¼ 100; Fig. 2e9 and 11)

Aouter ¼ 10�2 (for hL ¼ 20; Fig. 10)
Initial amplitude of central layer A0 ¼ 0.1
Asymmetry parameters k k ¼ 1
Asymmetry parameter v and resulting initial skew angle aini v ¼ 0.513, 0.713, 0.828, 0.886, 0.944

aini ¼ 15� , 30� , 60� , 90� , 120�

Asymmetry shift parameter s
s ¼ 0, 3:4

�
1
3

ld
2

�
, 5:1

�
1
2

ld
2

�
, 6:7

�
2
3

ld
2

�

Distance between two thick layers H0 (Figs. 2e8 and 10)
1.5 � H0, 2 � H0, 3 � H0 (Fig. 9)

Amplitude of random red noise on central layer Ar ¼ 0.02
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following Equation (3).
2.2. Initial asymmetry

To impose the pre-existing asymmetrical perturbation to the
two interfaces of the thin central layer, we made use of the error
function (erf), which allows prescribing a single well-determined
asymmetric shape at a specific location:

xcðtÞ ¼ t � v$erfðktÞ þ s

ycðtÞ ¼ �A0$erfðktÞ�Aouter sin
�
2pxc
ld

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Large�scale sinusoid

þcc; (3)

where xc(t) and yc(t) are the x- and y-coordinates (as a function of t)
of the central line of the central thin layer (dashed line in the zoom
in Fig. 1), v and k determine the shape (i.e., sharpness and skew
angle aini) of the asymmetric geometry, s is the position in x-di-
rection at which the asymmetry is centered (s ¼ 0: asymmetry
centered at middle of the larger fold limb, s ¼ ld/4: asymmetry
centered at synformal hinge), and A0 is the amplitude in y-direction
of the asymmetric shape, which we chose to be the same as the
layer thickness (A0 ¼ h0 ¼ 0.1). Parameter t is used for the para-
metric formulation of Equation (3); its minimum and maximum
value is chosen such that eld/4 � xc � ld/4. Similar as above, cc is a
constant value chosen such that the central thin layer has the
desired distance to the two outer layers. We also impose the large-
scale sinusoid (Equation (1)) to the y-coordinate of the central thin
layer to have a common large-scale geometry for all three layers
independent of the asymmetry. The initial skew angle, aini, of the
asymmetric geometry (Fig. 1) can be calculated as

aini ¼ tan�1
�

2A0kffiffiffi
p

p � 2vk

�
: (4)

Since we fix the parameters A0 and k, the initial skew angle
solely depends on parameter v (Table 1).

Equation (3) prescribe the asymmetric geometry of the central
line of the central layer (dashed line in the zoom in Fig. 1). This line
is then shifted down (y-direction) and left (x-direction), as well as
up and right to define the lower and upper interface of the thin
central layer, respectively. The shift up and down is equal to ±h0=2
to obtain a thin layer thickness of h0; the shift right and left is equal
to ±h0v2=ð12A0Þ, which we found suitable by trial-and-error to
obtain a quasi-constant layer thickness along the asymmetric initial
geometry. In addition to the asymmetric initial geometry, a random
red noise is imposed to the y-coordinates of these interfaces and
the central line to allow other small-scale folds to develop inde-
pendently of the prescribed asymmetry. The amplitude of this red
noise, Ar, is five times smaller than the amplitude of the asymmetric
geometry (Ar ¼ A0/5 ¼ 0.02; Table 1). The initial amplitudes of the
thick and thin layers (Aouter ¼ 10�4, Ar ¼ 0.02) roughly correspond
to the value found in Frehner and Schmalholz (2006) to be suitable
to develop parasitic folds without a pre-existing asymmetry.

2.3. Boundary conditions

In the x-direction, the size of the numerical model accommo-
dates half the dominant wavelength of the two-layer system (ld/2,
Equation (1); Fig. 1). This is justified because the two-layer system
is assumed to buckle in a periodic manner; hence, for symmetry
reasons, modeling only half a wavelength is sufficient. In the y-di-
rection, the bottom and top boundaries are far enough (>2ld) away
from the multilayer stack to have a marginal influence of the
boundary conditions.

We apply constant-strain rate layer-parallel shortening to
deform the multilayer stack. The particular boundary conditions
are:

� Left and right boundaries: Moving free-slip boundary conditions
(i.e., zero traction plus prescribed boundary-perpendicular ve-
locity). The horizontal (boundary-perpendicular) velocity is
adjusted at every time increment to maintain a constant
shortening strain rate, _εbg .

� Bottom boundary: Non-moving free-slip boundary conditions
(i.e., zero traction plus zero boundary-perpendicular velocity).

� Top boundary: Free surface boundary conditions (i.e., zero
traction plus zero boundary-perpendicular normal stress).

The prescribed horizontal shortening strain rate is used to
normalize strain rate values (i.e., _εbg ¼ �1; Table 1).

2.4. Calculation procedures

The initial finite-element mesh is set up in away that the central
line of the central layer (dashed line in the zoom in Fig. 1) is



Fig. 3. Deviation of the central thin layer from the larger-scale median line (dashed
white line in Fig. 2) as a function of position along the larger-scale fold (abscissa) and
shortening for the same simulation as shown in Fig. 2. The amounts of shortening (line
gray level) are the same as in the subfigures in Fig. 2 (light gray: initial stage; black:
45% shortening). The left end of the abscissa corresponds to the antiformal hinge, the
right end to the synformal hinge, and the figure center to the fold limb of the larger-
scale fold. Thin arrows on either end of the figure indicate the shortening of the me-
dian line. Bold arrows indicate the amplitude evolution of the thin-layer folds. 1.5
times the dominant wavelength of the thin layer, l , is provided as a gray
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explicitly discretized. Thanks to the body-fitting Lagrangian
formulation, this line can then easily be tracked during ongoing
deformation. On the other hand, the median line between the two
outer layers (dashed white line in Fig. 2) is not a material line and is
therefore not discretized by the finite-element mesh. For each time
step, we calculate this median line between the upper interface of
the lower thick layer (interface A) and the lower interface of the
upper thick layer (interface B) using the following procedure:

1. Create a single (high resolution) array with x-coordinates, xm.
2. Loop through all numerical points on interface A.

a. For each point (PA) on interface A, find the closest point (PB)
on interface B.

b. Calculate the midpoint (PC) between PA and PB.
3. Linearly interpolate the array of points PC onto array xm.

Resulting in array Dl ¼ {xm,yl}.
4. Repeat 2 and 3, but switching interfaces A and B. This results in

array Du ¼ {xm,yu}.
5. Calculate the mean y-coordinate ym ¼ (yl/2þyu/2) for every x-

coordinate in array xm, resulting in the median line {xm,ym}.

For every time step, we can compare the large-scale median line
of the thick layers with the central line of the central thin layer,
calculate the deviation of the latter from the former, which corre-
sponds to the thin layer amplitude, or calculate the angle between
the two, which corresponds to the evolving skew angle.
Fig. 2. Simulation snapshots of an example simulation with initial skew angle aini ¼ 60� an
background shortening is indicated in % in each subfigure. Colors correspond to the second
scale median line. The initial asymmetry survives the early stages of the buckle folding pr
parasitic folds with correct vergence. (For interpretation of the references to colour in this
3. Results

Fig. 2 shows a series of simulation snapshots of a typical nu-
merical finite-element simulation (in this example, aini ¼ 60�,
s ¼ 0). During the early folding stages (up to ~18% shortening), the
d asymmetry shift parameter s ¼ 0 (asymmetry centered on the fold limb). Increasing
invariant of the strain rate tensor, _εII . The dashed white line corresponds to the larger-
ocess, which results in an alleged parasitic fold with wrong vergence, alongside true
figure legend, the reader is referred to the web version of this article.)

d,thin

background.



Fig. 4. Same as Fig. 3, but for different initial skew angles, aini (top to bottom).
Compared to Fig. 3, only two amounts of shortening are shown (besides the initial
stage), which correspond to the simulation snapshots in Fig. 5.
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initial asymmetry amplifies visibly. At the same time, the central
thin layer also buckles away from the asymmetry due to the initially
imposed random red noise and develops folds with roughly the
dominant wavelength, ld;thin ¼ 2ph0½hL=ð6hMÞ�1=3 (Biot, 1961). At
first (<18% shortening), these buckle folds exhibit an upright
symmetric geometry. As soon as the two outer thick layers amplify
to finite amplitudes (>18% shortening), the symmetric folds
Fig. 5. Simulation snapshots (similar to Fig. 2) of simulations with different initial skew ang
Compared to Fig. 2, only two snapshots are shown for each initial skew angle.
between the thick layers are sheared into an asymmetric geometry
and form typical parasitic folds. This two-stage development of
parasitic folds (first symmetric, then sheared into asymmetric ge-
ometry) is consistent with the studies of Ramberg (1963) and
Frehner and Schmalholz (2006). However, in this study (Fig. 2) the
combined amplification of the initial random noise and the initial
asymmetry yields parasitic folds with both correct and wrong
vergence (at ~32.9% shortening). The initial asymmetry exhibits a Z-
shape (clockwise vergence) while the true parasitic folds away from
the asymmetry exhibit an S-shape (anticlockwise vergence).

With continuing amplification of the two outer thick layers
(>25.8%; Fig. 2), thin-layer folds on the limb of the larger fold
generally start to de-amplify. In particular, the pre-existing asym-
metry, after initial amplification, de-amplifies and almost vanishes
after a shortening of 45%. At the same time, thin-layer folds close to
the hinge of the larger fold continue amplifying, which results in
well-developed symmetric (M-shaped) parasitic folds.

To better quantify the above observations, Fig. 3 shows the de-
viation of the central thin layer from the larger-scale median line.
The latter is drawn as a dashed white line in Fig. 2. In the center of
Fig. 3 (corresponding to the limb of the larger-scale fold), the
evolution of the initial asymmetry can be tracked with increasing
shortening. The asymmetry first grows up to a shortening of about
18%, after which the asymmetry de-amplifies. Away from the
asymmetry, close to the fold hinges, the initial random perturbation
develops symmetric buckle folds with the dominant wavelength,
ld,thin, which continuously amplify during the entire simulation.
Similar to the initial asymmetry, those buckle folds closer to the
fold limb of the larger-scale fold de-amplify after a certain amount
of shortening.
les, aini, and asymmetry shift parameter s ¼ 0 (asymmetry centered on the fold limb).



Fig. 6. A) Fold amplitude evolution as a function of increasing shortening for different
initial skew angles, aini (different gray levels) and asymmetry shift parameter s ¼ 0.
Shown are the amplitude of the larger-scale fold (thick layers; dotted lines), as well as
the amplitude of the central thin layer at the larger-scale fold hinge (dashed lines) and
at the larger-scale fold limb (i.e., amplitude of the initial asymmetry; solid lines). As a
reference, the amplitude evolution of the larger-scale fold is shown for a simulation
without any thin layer (2-layer system). All amplitudes are normalized with the initial
thickness of the corresponding layer (i.e., thin-layer amplitude normalized with initial
thickness of thin layer; thick-layer amplitude normalized with initial thickness of thick
layers). B) Evolution of the skew angle, a, of the geometrical asymmetry as a function
of increasing shortening for different initial skew angles, aini, and asymmetry shift
parameter s ¼ 0. Negative skew angles would represent true parasitic folds with
correct vergence; positive skew angles represent parasitic folds with wrong vergence.
Thin vertical lines in both A) and B) correspond to the amounts of shortening used for
the simulation snapshots in Figs. 2 and 5.
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3.1. Effect of strength of initial asymmetry (skew angle)

To investigate the effect of different strengths of the initial
asymmetry, Fig. 4 shows the deviation of the central thin layer from
the larger-scale median line for different initial skew angles,
aini ¼ [15�, 30�, 90�, 120�] and Fig. 5 shows the corresponding
simulation snapshots, complementing the data and simulation
snapshots for aini ¼ 60� shown in Figs. 3 and 2, respectively. A
qualitative comparison does not reveal major differences between
the different initial skew angles and observations from Figs. 2 and 3
can be repeated here. All initial asymmetries grow from their initial
state up to a shortening of 18% and then de-amplify. In fact, after
39.3% shortening, the amplitude of each asymmetry is comparable
to its initial state (Fig. 4). At the same time, close to the larger-scale
fold hinges, the thin layer buckles and continuously amplifies to
form symmetric (M-shaped) true parasitic folds (Figs. 4 and 5).
Parasitic folds closer to the larger-scale fold limb slow down their
amplification or even de-amplify with increasing shortening.

The amplitude evolution qualitatively described above is plotted
in Fig. 6A as a function of shortening for all the different initial skew
angles. We plot the normalized amplitude of the two outer thick
layers, calculated from the larger-scale median line (dashed white
lines in Figs. 2 and 5), as well as the normalized amplitude of the
central thin layer at two localities. On one hand, we calculate the
amplitude of the asymmetry as themaximumdeviation of the thin-
layer from the larger-scale median line within a zone of ±0.75
dominant wavelengths (ld,thin) from the initial asymmetry (gray
background in Figs. 3 and 4); on the other hand, we calculate the
amplitude of the symmetric (M-shaped) parasitic folds as the
maximum deviation of the thin-layer from the larger-scale median
line within zones of 1.5 dominant wavelengths (ld,thin) away from
either larger-scale fold hinge.

While the amplitude of the two outer thick layers grows
smoothly (dotted lines in Fig. 6A), the thin-layer amplitudes exhibit
minor irregularities and different initial values, which are due to
the random noise applied to the thin layer in the initial model
setup. Despite these irregularities, Fig. 6A reveals that the initial
asymmetry (solid lines in Fig. 6A) grows up to a shortening of about
18% before it de-amplifies and eventually (at ~40% shortening)
reaches amplitudes similar to the initial one. The de-amplification
begins shortly after the larger-scale fold starts to amplify to finite
amplitudes. Close to the larger-scale fold hinges, the symmetric
parasitic folds (dashed lines in Fig. 6A) continuously amplify during
the entire folding history modeled here.

For comparison, Fig. 6B shows the evolution of the skew angle of
the geometrical asymmetry, a, on the same abscissa as Fig. 6A. The
skewangle is measured with respect to the larger-scale median line
(zoom in Fig. 1). Starting from the initial value, aini, the skew angle
increases up to about 18% shortening in all simulations. In other
words, the geometrical asymmetry becomes even more asym-
metric and the parasitic fold exhibits an even clerar wrong ver-
gence. The asymmetries with an initial skew angle of aini ¼ [60�,
90�] reach maximum skew angles larger than 90�; hence they
become overturned folds with respect to the larger-scale median
line. When the asymmetry deamplifies (>18% shortening; Fig. 6A),
the skew angle also reduces and reaches the same level of asym-
metry as in the initial setup at about 33% shortening. Fig. 6 dem-
onstrates that the geometrical asymmetry not only amplifies and
de-amplifies but at the same time also increases and decreases
the level of asymmetry. However, the skew angle never becomes
negative and the asymmetry therefore never changes its vergence
on the larger-scale fold. Negative skew angles would represent the
proper vergence for true parasitic folds. Hence, the initial asym-
metry keeps its wrong vergence throughout the simulations.

All of the above observations are independent of the initial skew
angle, indicating that the initial skew angle has very little influence
on the dynamics of the multilayer system. As a comparison, we also
plot in Fig. 6A the amplitude evolution of the two outer thick layers
without any thin layer between them (i.e., 2-layer system). The 2-
layer system amplifies at a much lower rate compared to all 3-
layer systems modeled here, independent of the initial skew
angle. In other words, adding the central thin layer with an initial
asymmetry strongly modifies the dynamics of the whole multilayer
system and lets it amplify much faster.
3.2. Effect of position of initial asymmetry (shift parameter)

To investigate the effect of laterally shifting the initial
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asymmetry, Fig. 7AeC shows similar snapshots to Fig. 2 (i.e.,
aini ¼ 60�), but for different asymmetry shift parameters,

s ¼
�
1
3

ld
4 ;

1
2

ld
4 ;

2
3

ld
4

�
(Equation (3)), and Fig. 7D shows the corre-

sponding fold amplitude evolution curves equivalent to Fig. 6A. The
amplification of the asymmetry (solid lines in Fig. 7D) during the
early folding stages (up to ~18% shortening) is hardly affected by the
shift. However, the de-amplification is less pronounced with
increasing shift. The asymmetry situated on the larger-scale fold
limb (s ¼ 0) de-amplifies the most; the asymmetry close to the

larger-scale fold hinge
�
s ¼ 2

3
ld
4

�
does not de-amplify at all, but

continues growing throughout the entire folding history modeled
here. The other fold amplification curves shown in Fig. 7D (i.e., thin
layer at larger-scale fold hinge, thick-layer) are hardly affected by
the shift of the asymmetry. Hence, we could repeat the same ob-
servations as for a shift of s ¼ 0 (Fig. 6A), which we however omit.

For the extreme case of
�
s ¼ 2

3
ld
4

�
(asymmetry close to larger

synformal hinge), Fig. 8 shows the effect of the initial skew angle,
aini; Fig. 8 can be directly compared to Fig. 6 showing the same data
but for s¼ 0 (asymmetry centered at larger fold limb). Independent
of the initial skew angle, the asymmetry continuously grows during
the entire folding history (solid lines in Fig. 8A). Up to about 18%
shortening, the asymmetry exhibits active growth with a growth
rate similar to the true parasitic folds (dashed lines in Fig. 8A). With
Fig. 7. A)eC) Simulation snapshots (similar to Fig. 2) of simulations with different asymme
snapshots are shown for each asymmetry shift parameter. D) Same as Fig. 6A, but for the s
used for the simulation snapshots in AeC. Note that the curves for s ¼ 0 are the same as i
increasing shortening (>18%), the growth rates of both the asym-
metry and the true parasitic folds decrease corresponding to pas-
sive (pure-shear) growth until the end of the simulations. At the
same time, the skew angle increases until a shortening of about 18%
(Fig. 8B) corresponding to an increase in asymmetry. After about
18% shortening, the skew angle stabilizes and does not change
significantly anymore. In particular, it does not decrease as for an
asymmetry located on the larger-scale fold limb (s¼ 0; Fig. 6B). The
other two fold amplification curves (i.e., thin layer at larger-scale
fold hinge, thick-layer; Fig. 6A) are hardly affected by the shift of
the asymmetry.
3.3. Combined effect of position of initial asymmetry and distance
between thick layers

Figs. 6B and 8B show the skewangle evolution for the case of the
two thick layers having an initial distance to each other that is equal
to their thickness, H0 (Fig. 1). To expand these results, Fig. 9 shows
the effect of an increasing initial distance between the two thick
layers, [1, 1.5, 2, 3] � H0 (Table 1). Despite some data scatter, which
is mostly due to the initial random red noise, the general obser-
vations from above remain valid. For all studied distances between
the thick layers and for both asymmetry shift parameters,

s ¼
�
0; 2

3
ld
4

�
, the skew angle increases until a shortening of about

18%. Geometrical asymmetries located on the larger-scale fold limb
try shift parameters, s, and initial skew angle aini ¼ 60� . Compared to Fig. 2, only two
imulations shown in AeC. Thin vertical lines correspond to the amounts of shortening
n Fig. 6A for aini ¼ 60� .
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(s ¼ 0; solid lines in Fig. 9) reduce their skew angle with increasing
shortening and reach the initial value at a shortening of about 33%.
Geometrical asymmetries located close to the larger-scale fold

hinge
�
s ¼ 2

3
ld
4

�
; dashed lines in Fig. 9) stabilize their skew angle,

which does not change significantly anymore with increasing
shortening.
Fig. 8. Same as Fig. 6, but for an asymmetry shift parameter s ¼ 2
3

ld
4. Not that the

curves for aini ¼ 60� are the same as in Fig. 7D for s ¼ 2
3

ld
4.
4. Discussion

We presented simplified test cases of a thin layer with a pre-
existing asymmetry situated between two thicker layers. During
buckle folding, the thick and thin layers develop different dominant
wavelengths, ld and ld,thin, respectively, according to Schmid and
Podladchikov (2010) and Biot (1961). Here we prescribed the
larger-scale fold wavelength in the initial model setup (Equation
(1)), but allowed the thin layer to develop buckle folds self-
consistently using an initial random perturbation besides the pre-
scribed asymmetry. Prior to buckling of the thick layers to finite
amplitude, both the asymmetry and the random perturbation
amplify. This is consistent with studies by Abbassi and Mancktelow
(1990) and Adamuszek et al. (2013), which modeled the amplifi-
cation of an asymmetric initial perturbation in single-layer buckle
folds. However, shortly after the thick layers amplify to finite
amplitude, the asymmetry de-amplifies and unfolds (Figs. 6 and
7D).

Unfolding during ongoing tectonic deformation has been
investigated only in very few studies. In simple-shear deformation,
Llorens et al. (2013b) demonstrated that layers, which are oriented
obliquely to the shear zone boundary and within the shortening
quadrant of the simple-shear flow field, rotate towards a 90�-
orientation with respect to the shear zone boundary. During this
rotation, the layers are shortened and develop buckle folds. If the
simple-shear deformation continues, Llorens et al. (2013a) showed
that the folded layers rotate away from the 90�-orientation and
hence are being stretched and unfolded. This folding and unfolding
happens in a constant simple-shear flow field and should not be
misinterpreted as two deformation phases. Unfolding has also been
investigated by Schmalholz (2008), Lechmann et al. (2010), and
Frehner et al. (2012), but in pure-shear deformation. These studies
applied layer-parallel extension in numerical unfolding simulations
to restore folded geological layers. Hence, these studies used a
time-reverse approach and did not claim that unfolding is a process
actually happening in nature.

In the presented simulations, the deformation leading to
unfolding of the initial asymmetry is more complex than pure or
simple shear. On the larger-scale fold limb, the amplification of the
larger-scale fold results in layer-perpendicular flattening (and
layer-parallel extension) between the two outer thick layers
(Frehner and Schmalholz, 2006). At the same time, amplification of
the two outer thick layers leads to flexural flow between them
(Ramsay and Huber,1987). The resulting deformation field between
the two outer thick layers is a combination of pure and simple
shear. Both contributions promote unfolding of the initial asym-
metry. The pure-shear component (layer-perpendicular flattening)
squeezes the thin layer; the simple-shear component (flexural
flow) has a rotational component opposite to the vergence of the
asymmetry. This combined effect leads to a very efficient de-
amplification of the asymmetry as soon as the larger-scale fold
starts to grow to finite amplitude. However, both effects decrease
from fold limb to fold hinge (Frehner and Schmalholz, 2006;
Ramsay and Huber, 1987). Therefore, asymmetries located away
from the larger-scale fold limb are less prone to de-amplification
(Fig. 7, compare Figs. 6, 8 and 9).
If the asymmetry is located on the larger-scale fold limb, de-
amplification begins after the larger-scale fold amplifies to finite
amplitude (Figs. 6A and 7D). Therefore, de-amplification strongly
depends on the initial amplitude and the growth rate of the thick
layers, and ultimately also on the viscosity ratio between the
higher-viscous layers and the surrounding matrix. To illustrate this,
Fig. 10 shows the same fold amplification curves and skew angle
development as Fig. 6, but for a viscosity ratio of hL:hM ¼ 20:1 (as
compared to hL:hM ¼ 100:1 in Fig. 6). For this simulation, we also
changed the initial model setup (Equation (2)) according to the
viscosity ratio. Because such a multilayer system hardly amplifies
for the given model parameters, we increased the initial amplitude
of the two outer thick layers to Aouter ¼ 10�2 (as compared to
Aouter ¼ 10�4 in Fig. 6). Even so, the larger-scale fold does not
amplify very strongly compared to the central thin layer (Fig. 10A).
Therefore, no layer-perpendicular flattening and no marked flex-
ural flow occurs between the two outer thick layers and hence the
initial asymmetry does not de-amplify. Consequently, the asym-
metry is still well preserved after a shortening of 39.3% (Fig. 10D),
while in the case of a viscosity ratio of hL:hM¼ 100:1 the asymmetry
is hardly visible after the same amount of shortening (Fig. 2). This
example illustrates the importance of the relationship between
larger-scale and smaller-scale amplification.

Frehner and Schmalholz (2006) showed that the presence of



Fig. 9. Evolution of the skew angle, a, of the geometrical asymmetry as a function of
increasing shortening for different initial skew angles, aini ¼ [30� , 60� , 90�] (dark to
light gray), for two different asymmetry shift parameter, s ¼ [0, 2/3] � ld/4 (solid and
dashed lines), and for different initial distances between the two thick layers, [1, 1.5, 2,
3] � H0 (grouped for each aini-s-combination). Slightly bolder lines correspond to data
already shown in Fig. 6B (bold solid lines) and Fig. 8B (bold dashed lines).

Fig. 10. A) & B) Same as Fig. 6, but for a viscosity of the higher-viscous layers of hL ¼ 20 (as op
(as opposed to Aouter ¼ 10�4 in Fig. 6). C) & D) Simulation snapshots of the simulation wi
compared to all other simulation snapshots (e.g., Fig. 2).
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thin layers developing parasitic folds between two thicker layers
hardly influences the dynamics of the two thicker layers (Fig. 10 in
Frehner and Schmalholz, 2006). However, in the presented simu-
lations, we observe that the growth rate of the thick layers is
strongly influenced by the presence of the thin layer (Figs. 6A, 7D,
8A and 10A). The only difference between the two studies is the
initial geometry. It appears that the initial asymmetry of the thin
layer, not the presence of the thin layer as such, modifies the larger-
scale dynamics of the multilayer system. This is in general agree-
ment with the study of Mancktelow (1999), which demonstrated
that the initial geometry strongly influences the final shape of
single-layer buckle folds. Naturally, various other parameters may
influence the multilayer buckling dynamics (e.g., Schmid and
Podladchikov, 2010; Treagus and Fletcher, 2009).

The simplified test cases presented here may not be represen-
tative for natural geological folds. In nature, a whole range of
complications may occur compared to our simulations, such as
more complex rheological flow laws (e.g., non-linear viscous, visco-
elasto-plastic), spatially and/or temporally changing rheological
behavior (e.g., different for each layer), or more complex initial
geometries. However, the aim of this study was not to reproduce
natural folds one-to-one, but to investigate first-order effects of
pre-existing asymmetries during buckle folding and the possible
inheritance of such structures. Non-linear viscous materials tend to
posed to hL ¼ 100 in Fig. 6) and amplitude of the two outer thick layers of Aouter ¼ 10�2

th aini ¼ 60� (intermediate gray level in A & B). Note that the color scale is different
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localize deformation more than linear viscous ones. The presented
simulation snapshots (Figs. 2, 5, 7AeC and 10CeD) show that the
strain rate is highest close to the geometrical asymmetry. For non-
linear viscous materials, we therefore speculate that deformation
would localize in these regions, intensifying the asymmetry
compared to the presented Newtonian cases. As a result, we believe
that pre-existing asymmetries in non-Newtonian materials are less
prone to de-amplification and may survive buckling of the larger-
scale fold more easily. However, a detailed study and quantifica-
tion of the effect of rheology remains to be done in the future.

As an example for a more complex geometrical setup, Fig. 11
shows two snapshots of a simulation with 10 thin layers between
the two outer thick layers. We added the initial asymmetry
(Equation (3)) to all 10 layers using aini ¼ 60�, but with a shift
parameter, s, increasing from bottom to top. The initial asymme-
tries were therefore vertically aligned at an angle of 60�. The overall
geometry of the multilayer buckle fold is quite different to the 3-
layer system (Fig. 2); it resembles a much more chevron-type fold
with straight limbs, sharp hinges, and hinge-collapse structures
close to the inner arc of the multilayer fold. However, the evolution
of the initial asymmetries is similar to the 3-layer case; they also
grow first (Fig. 11, left panel) and then de-amplify (Fig. 11, right
panel). The formation of a larger-scale chevron-type fold
straightens the limbs even more than in the 3-layer case. Therefore,
de-amplification and unfolding may be more efficient in multilayer
folds compared to folds with fewer layers. However, the efficiency
of de-amplification certainly also depends on the spacing between
the layers, which is however not further studied here.
Fig. 11. Simulation snapshots of a simulation with 10 thin layers that all have an initial
asymmetry with aini ¼ 60� . The shift parameter, s, is increasing from bottom to top, so
that the initial asymmetries are vertically aligned at an angle of 60� .
5. Conclusions

Whether or not a pre-existing asymmetry can be inherited
during multilayer buckle folding strongly depends on the interplay
between the larger-scale and smaller-scale amplification. Gener-
ally, on the limbs of the larger-scale fold two processes work
against the pre-existing asymmetry: layer-perpendicular flattening
and the rotational component of flexural flow. Both processes
promote de-amplification and unfolding of the initial asymmetry.
However, the efficiency of these two processes depends on the
amplification of the larger-scale fold. If amplification is fast (i.e.,
large viscosity ratio hL:hM) and/or early with respect to the thin
layer amplification (i.e., large initial perturbation Aouter), the initial
asymmetry is more prone to de-amplification and unfolding.

De-amplification is a viable process on the larger-scale fold
limbs during buckle folding, which may lead to unfolding and the
disappearance of pre-existing structures. This is particularly true if
the pre-existing folds are relatively open and exhibit low ampli-
tudes. On the other hand, if the pre-existing fold is tight or isoclinal,
its inheritance-potential may be much larger. Such tight or isoclinal
folds are typical for tectonic folds, but much less frequent in sedi-
mentary structures. Indeed, fold interference patterns of type 3
(Ramsay and Huber, 1987), which resemble parasitic folds,
commonly contain isoclinal folds as their pre-existing first-phase
folds. If the first-phase folds were open, they would be unfolded
during the second-phase folding event and no interference pattern
would ever develop.
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