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Numerical simulations of parasitic folding in multilayers
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Abstract

We use the finite element method to simulate slow viscous (Newtonian) flow in two dimensions without gravity and to model asymmetric (S-
and Z-shaped) and symmetric (M-shaped) parasitic folds during multilayer folding. During multilayer folding, the matrix between stiffer layers
shows a deformation close to pure shear in the hinge area and a combination of pure and simple shear in the limb areas. Thinner layers placed
between thicker layers develop symmetric parasitic folds in the hinge, and eventually asymmetric parasitic folds in the limbs of the larger fold.
Our results verify numerically the theory that asymmetric parasitic folds develop from symmetric buckle-folds that are sheared by the hingeward
relative displacement of the thick layers in the limbs of the first-order fold. To develop asymmetric shapes, the amplitudes of the parasitic folds
must exceed a critical value before the first-order fold begins to amplify. Otherwise, the parasitic folds are unfolded during flattening that takes
place in the limb area between the thick layers. More than five thin layers are necessary to generate distinct asymmetric parasitic folds for the
applied model setting. More layers generate higher amplification rates in the thin layers and, hence, higher amplitudes.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Parasitic folds are common in folded multilayer sequences
(Fig. 1). Parasitic folds are ‘‘folds of small wavelengths and
amplitudes located within folds of larger wavelengths and am-
plitudes in situations of polyharmonic folding. Parasitic folds
normally show S- or Z-shaped asymmetric forms in the limbs
of the larger structure (sometimes termed drag folds) and sym-
metric M forms in hinge zones’’ (Ramsay and Huber, 1987).
The term ‘‘parasitic fold’’ was established by DeSitter
(1964) and replaced the older term ‘‘drag fold’’. Drag folds
were often considered to result from layer-parallel shearing
of incompetent layers (e.g., Williams, 1961), whereas a buck-
ling instability was not considered to be essential. In contrast
to the shearing theory, Ramberg (1963, 1964) applied the
dominant wavelength concept of Biot (1961) and showed
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theoretically and experimentally that parasitic folds (Ramberg
still used the term drag fold) may form in multilayer se-
quences, if the individual layers have different thicknesses
and mechanical strengths (i.e. viscosity, if the layers are New-
tonian fluids). Ramberg (1963) showed that parasitic folds de-
velop in two stages: first, a buckling instability generates
symmetric folds and, second, the symmetric buckles are
sheared and become asymmetric. Shearing is caused by fold-
ing of thicker layers, which exhibit much larger wavelengths
than the parasitic folds in the thin layers between the thick
layers.

Although there are many theoretical (e.g., Biot, 1965;
Johnson, 1969; Johnson and Fletcher, 1994), analogue (e.g.,
Cobbold et al., 1971; Ghosh, 1968; Ramberg and Strömgard,
1971) and numerical (e.g., Casey and Huggenberger, 1985;
Debremaecker and Becker, 1978; Schmalholz et al., 2001)
studies of multilayer folding, few of these studies were con-
cerned with the formation of parasitic folds (e.g., Pfaff and
Johnson, 1989; Ramberg, 1963). In this study, we perform nu-
merical simulations of multilayer folding in two dimensions to
test and quantify the theory of parasitic folding for Newtonian
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viscous materials. Ramberg (1963) verified his theory with an-
alogue experiments using elastic materials. We performed nu-
merical simulations because they provide more information
than analogue experiments. Advantages of the numerical ap-
proach are: (i) the rheological properties can be defined ex-
actly, whereas for analogue materials the exact rheology is
often difficult to quantify, (ii) all boundary conditions are
known, (iii) the contact between individual layers can be
welded, whereas some amount of interlayer gliding cannot
be excluded in analogue experiments, and (iv) the strains,
strain rates and stresses are calculated at any point within
the numerical model domain.

The particular aim of this study is to model parasitic fold-
ing in multilayers having at least one order of magnitude
larger wavelengths than the parasitic folds. A particular goal
is to generate distinct asymmetric parasitic fold forms in the
limbs of the larger fold. This is not trivial for a pure shear
background deformation with a shortening direction parallel
to the initially flat layers (Ramberg, 1963). Therefore, the
strain evolution is thoroughly investigated using finite strain
ellipses calculated from the numerically computed velocity
field. Several studies (e.g., Mühlhaus et al., 2002; Ramberg,
1961; Schmid and Podlachikov, 2006) showed that the number
of layers in multilayer systems and the resulting anisotropy
have a strong effect on the amplification rates of the individual

Fig. 1. Asymmetric, S- and Z-shaped, parasitic folds in folded, foliated metagab-

bros, Val Malenco, Southern Swiss Alps (picture courtesy of Jean-Pierre Burg).
layers. Therefore, we vary the number of thin layers in our ex-
periments and show that a minimum number of thin layers
(approx. >5) is required to generate parasitic folds with dis-
tinct asymmetric shapes.

We first describe the model setting and the numerical algo-
rithm, which is based on the finite element method (see Ap-
pendix), and how we calculate the finite strain ellipse from
the numerical results. Then, we consider folding of two,
equally thick, viscous layers embedded in less viscous mate-
rial. We quantify the strain distribution and evolution in the
area between the two layers. Next, thinner layers having the
same viscosity as the thick layers are placed between the
two thick layers. We investigate the impact of the initial am-
plitude and of the number of thin layers on the parasitic fold
development.

2. Methods

2.1. Model setting

The governing continuum mechanics equations describing
slow, viscous, incompressible flow in two dimensions are
solved with the finite element method (e.g., Cuvelier et al.,
1986; Hughes, 1987; Thomasset, 1981). The numerical simu-
lations have been performed with the self-developed algorithm
presented in the Appendix. All physical properties are non-
dimensionalized using three characteristic values given in
Table 1. Both the mechanically strong layers and the embed-
ding material have a Newtonian rheology and the viscosity
contrast is 100 which leads to an active amplification of all
the stiff layers. Boundary conditions are free slip at the lower
and left boundary, free surface at the upper boundary and free
slip with prescribed horizontal velocity at the right boundary.
The horizontal velocity is modified at every time step to en-
force a constant background shortening strain rate. Differences
in fold wavelengths are controlled by differences in initial
layer thicknesses and differences in fold amplification are con-
trolled by differences in initial amplitudes. Initial conditions
and other parameters are given in Table 2. The velocities are
only specified at the boundaries of the model domain so that
during shortening a true wavelength selection takes place for
all layers.

2.2. Finite strain ellipse

The finite strain ellipse is a geometrical tool to display the
strain field (e.g., Ramsay and Huber, 1983) and is here calcu-
lated from the numerically computed velocity field. For every
numerical time step the components of the velocity gradient

Table 1

Characteristic values used for non-dimensionalization of all other physical

quantities

Char. length scale (Thickness of thick layer)/5

Char. time scale 1/(Shortening strain rate)

Char. viscosity Viscosity of matrix
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tensor are calculated at each point within the numerical do-
main. The velocity gradient tensor is used to calculate the
new coordinates (x0, y0) of an arbitrary point P after a deforma-
tion increment, if the initial coordinates (x, y) are known. The
tensor relating the incremental deformation is here called in-
cremental deformation gradient tensor G(t) and defined by
the relation
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where vx and vy are velocities in the x- and the y-direction, re-
spectively, Dt is the time interval between two consecutive
deformation increments and the superscript symbol t refers
to the time step. After a second deformation increment, direct

Table 2

Model parameters for both two-layer and multilayer simulations

Setup for numerical experiments (dimensionless parameters)

Viscosity layers mstiff¼ 100

Viscosity embedding material mmatrix¼ 1

Initial thickness

Thick layers Hthick 0¼ 5

Thin layers (multilayers only) Hthin 0¼ 0.1

Material above and below thick layers Hmatrix outer¼ 20

Material between layers (multilayers only) Hmatrix 0¼ 0.3

Width of domain L0¼ 40

Initial perturbation

Thick layers Half cosine wave.

Thin layer (multilayers only) Random white noise.

Athin 0/Hthin 0¼ 0.1

Time step Dt¼ 5� 10�3

All values have been non-dimensionalized with the characteristic scales pre-

sented in Table 1.
substitution of Eq. (1) yields the new coordinates (x00, y00) of
point P as�
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According to this multiplicative coordinate transformation, the
coordinates of point P can be calculated for any number of de-
formation increments. Multiplication of all incremental defor-
mation gradient tensors leads to the finite deformation gradient
tensor F that directly connects the final coordinates with the
initial coordinates. Point P may be initially an arbitrary point
on a circle centred on an integration point of a finite element.
Assuming homogeneous deformation around this integration
point during all deformation steps, the coordinates of the
deformed circle can also be calculated (Fig. 2). Our formula-
tion to calculate the finite strain ellipse is in accordance with
Ramsay and Huber (1983, Appendix B). The principal strain
axes correspond to the eigenvalues of the tensor FTF (super-
script symbol T represents the transpose of the tensor) which
is the right CauchyeGreen tensor (Haupt, 2002).

The finite deformation gradient tensor is calculated for spe-
cific points within the numerical domain and is updated at ev-
ery time step. It can be averaged over an area or interpolated to
every point, like every other quantity. Therefore, finite strain
ellipses can be drawn everywhere and at every size within
the numerical domain. However, a strain ellipse represents
only the strain at a certain point assuming that the area covered
by the finite strain ellipse has undergone homogeneous strain.

In natural deformation it is possible that at a certain loca-
tion compression follows extension or vice versa. This means
that a circle can be changed into an ellipse, which afterwards
is deformed back to a circle. The resulting finite strain circle
does not readily express total strain. The same strain resetting
is true for rigid body rotations. To remove this shortcoming
and to be able to distinguish between truly undeformed circles
and deformed, but circular finite strain ellipses, we assign col-
ours to the calculated finite strain ellipses according to the
Fig. 2. (a) Progressive deformation of a strain ellipse during simple shear. To calculate the new coordinates of the ellipse after each deformation increment, Eq. (1)

is applied to the coordinates of the ellipse. (b) Direct calculation of the coordinates of the finite strain ellipse using Eq. (2). The finite deformation gradient tensor F

has to be calculated beforehand.
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accumulated von Mises equivalent strain and the finite rotation
angle due to rigid body rotation. The accumulated von Mises
equivalent strain, 3accumulated

eqv , and the rotation angle, a, are

3accumulated
eqv ¼
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where 3xx, 3yy and 3xy are the components of the incremental
strain tensor and uyx is the incremental spin (positive
counterclockwise):
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The von Mises equivalent strain is a measure of the total
change of shape and is always positive. Both quantities are
scalar and can be summed up over all deformation steps, lead-
ing to a value for the shape change history and the finite rota-
tion angle, respectively. While the shape of the strain ellipses
represents the final deformation stage, the colours provide in-
formation about the deformation history (Fig. 3).
3. Finite strain in two-layer folds

Simulations of multilayer folding include two thick layers
above and below thinner layers. The strain distribution and
evolution during folding of two thick layers with a homoge-
neous matrix in between is first investigated. Both layers ini-
tially exhibit a sinusoidal perturbation corresponding to the
theoretical dominant wavelength for single-layer folding
(Fletcher, 1977); the initial ratio of amplitude to layer thick-
ness is 0.01. Finite strain ellipses are coloured with the accu-
mulated von Mises equivalent strain and the finite rotation
angle for 40% horizontal bulk shortening (Fig. 3). Compared
to the matrix, the layers show little strain and the dominant de-
formation in these layers involves rigid body rotation. Rotation
and deformation are strong in the matrix (red colours on the
left- and right-hand side) and rotation is in opposite direction
to the rotation in the layers. The simultaneous rotations and
shape changes indicate that the main part of the deformation
is layer-parallel shearing. The thickness of the matrix mea-
sured orthogonal to the layer interfaces changes from hinge
to inflexion point. It becomes thicker in the hinge zone and
thinner in the limbs. At the same time, the two layers tend
to form parallel folds (the orthogonal layer thickness is con-
stant over the whole wavelength).

The matrix can be divided into three regions that undergo
different deformation paths: (i) near the inflexion point the ma-
trix is characterized by layer-parallel shortening, followed by
layer-parallel shearing and layer-normal flattening, (ii) near
the hinge zone the matrix deformation is characterized by
Fig. 3. Two folded viscous layers after 40% bulk shortening. Viscosity contrast between layers and embedding material is 100. The initial distance between the two

layers is equal to the layer thickness. Strain ellipses on the left-hand side are coloured with accumulated von Mises equivalent strain, ellipses on the right-hand side

are coloured with finite rigid body rotation angle.
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layer-parallel shortening during the whole folding history so
that total strain can be approximated by pure shear, and (iii)
a transition zone between regions (i) and (ii), where the two
different deformation regions interfere. In Fig. 4, nine origi-
nally vertical beams deformed with the numerically calculated
velocity field are plotted together with the corresponding finite
strain ellipses. Each beam initially consisted of five squares.
After 10% bulk shortening (Fig. 4a) the matrix is shortened
horizontally without any simple shear deformation. After
25% bulk shortening (Fig. 4b) simple shear is stronger near
the convex interface and strongest between the inflexion point
and the hinge. This is marked in the middle beam in the matrix
which deforms asymmetrically with a very strong strain near
the convex interface and a weaker strain near the concave in-
terface. The beam at the inflexion point of the matrix,

Fig. 4. Finite strain evolution for the two folded layers shown in Fig. 3. Nine

beams, three in each stiffer layer and three in the material between the layers,

initially consisted of five squares each. The location of the beams is shown in

the half fold (left-hand side).
however, deforms symmetrically. After 40% bulk shortening
(Fig. 4c) the middle beam in the matrix develops a strongly
strained tail at the convex interface. This tail extends between
the two layers into the zone influenced by flattening normal to
the layer interfaces. Flattening starts when the limbs of the two
layers move towards each other during fold amplification.
Therefore, the tail of the middle beam in the matrix results
from simple shearing and flattening; flattening intensifies the
strongly elongated shape of the finite strain ellipses. The
same shearingeflattening combination takes place in the cen-
tre of the beam at the inflexion point, while the two ends lie
outside this zone. As a consequence, the beam in the matrix
at the inflexion point develops an S-shape. Both the tail-shape
of the middle beam and the S-shape of the beam at the inflex-
ion point are also recognizable from the attitude of the finite
strain ellipses (Fig. 3).

In Fig. 5a the incremental strain rate in a direction parallel
to the layer interfaces is shown within the matrix. This layer-
parallel direction has been calculated at every point within the
matrix by constructing the shortest line between the two-layer
interfaces bounding the matrix and taking the normal direction
to this line. The layer-parallel strain rates have then been
calculated from the numerically calculated strain rates by
the usual coordinate transformation rules. Negative values
(blue) indicate layer-parallel shortening while positive values
(green to red) indicate layer-parallel extension. The boundary
between these two regimes is indicated with a black line where
layer-parallel strain rate is equal to zero. The area with posi-
tive values is referred to as area of incremental flattening.
Fig. 5b shows the area (red) of the matrix in which finite
flattening occurs. Finite flattening is here calculated based
on the initial distance between the two layers. Finite flattening
is active if the minimum distance between the two-layer inter-
faces is smaller than at the onset of the deformation. The evo-
lution of the areas of incremental flattening (bounded by the
zero-contour line for layer-parallel strain rates) and finite
flattening are compared in Fig. 6a. The area of finite flattening
is always smaller than the area of incremental flattening.

The smallest distance between the layer interfaces is sit-
uated near the inflexion point while the longest distance is
in the hinge region. Continuous layer-parallel shortening
in the hinge region leads to a steady increase of the distance
between the layers (dots, Fig. 6b). In the region near the
inflexion point (crosses) the distance between the layers first
increases and then decreases. The maximum of the line
marked by crosses indicates the transition from incremental
matrix thickening to incremental matrix flattening. The point
(around 30% bulk shortening in Fig. 6b) at which the line
marked by crosses falls below the value 1 (i.e. the current
distance equals the initial distance) indicates the onset of
finite flattening.

4. Asymmetric parasitic folds in multilayer systems

A stack of thin multilayers is now placed between the two
thick layers (Fig. 7). Table 2 lists the values of the used param-
eters. All thin layers have the same thickness and are 50 times
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Fig. 5. (a) Incremental layer-parallel strain rate in the material between the two layers shown in Fig. 3. The black line represents the contour where the incremental

strain rate is zero, and defines the transition between layer-parallel shortening (blue) and layer-parallel extension (red). The area between the two contour lines

represents the area of incremental flattening in direction normal to the layer interfaces. (b) The red area defines the area of finite flattening, which is defined as the

area, in which the distance between the two-layer interfaces is smaller than at the initial stage.
thinner than the thick layers to guarantee wavelengths of the
parasitic folds at least one order of magnitude smaller than
the first-order fold. The interlayers are three times the thick-
ness of the thin layers. The viscosity of the thick and thin
layers is the same, 100 times higher than the viscosity of the
embedding material. Note that in Ramberg’s (1963) experi-
ments the thick layers were weaker than the thin layers to de-
lay fold amplification of the thick layers relative to the thin
layers. The focus in these experiments is on the deformation
of the thin layers; the thick layers are used to generate folds
larger than the parasitic folds that develop on the thin layers.
To allow folding of thin layers before that of thick layers,
the initial ratio of amplitude to layer thickness is set smaller
for the thick layers than for the thin layers. Both thick layers
initially have the same sinusoidal perturbation corresponding
to the dominant wavelength and the same initial ratio of am-
plitude to layer thickness. In contrast, all thin layers have a ran-
dom perturbation (white noise) of the layer interface (see
Mancktelow, 2001, for the impact of various initial geometri-
cal irregularities on single-layer folding). Each layer interface
of the thin layers had a different initial random perturbation to
introduce as much geometrical randomness as possible.

Fig. 7 shows the deformed multilayer sequence with 15 thin
layers after 50% bulk shortening. The initial ratio of amplitude
to thickness (A/H ) of the thick layers was 10�3, 2� 10�4 and
10�4, and in the thin layers the average ratio of initial ampli-
tude to layer thickness was always 0.1. For A/H¼ 10�3

(Fig. 7a) there are parasitic folds in the hinge region only.
Near the inflexion point, the thin layers are straight. Small par-
asitic folds are developed in the transition zone. Most parasitic
Fig. 6. (a) The line with dots shows the evolution of the area of incremental flattening divided by the whole area between the two layers (see also Fig. 5a). Until

around 15% bulk shortening, there is no layer-parallel extension, only shortening. The line with crosses shows the evolution of the area of finite flattening divided

by the whole area between the two layers (see also Fig. 5b). Finite flattening starts later than incremental flattening. Both areas of flattening exhibit a maximum.

(b) The line with dots shows the evolution of the distance between the two layers in the hinge. The distance is divided by the initial distance between the two layers.

This distance is continuously increasing. The line with crosses shows the evolution of the minimum distance between the two layers, which occurs between

the inflexion points of the layers. The maximum indicates the transition from incremental shortening to incremental flattening. When the line decreases below

the value of one, finite flattening starts.
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Fig. 7. Deformed multilayer sequence consisting of 15 thin layers placed between two thicker layers after 50% bulk shortening. Three different models are shown

with a different initial ratio of amplitude to layer thickness for the thick layers. (a) 10� 10�4, (b) 2� 10�4 and (c) 10�4. The thick layers initially exhibited a si-

nusoidal perturbation, whereas each of the interfaces of the thin layers initially exhibited a random (white noise) perturbation with an average ratio of amplitude to

thickness of 0.1.
folds are rather symmetric. For A/H¼ 10�4 (Fig. 7c) the
parasitic folds are strongly developed everywhere on the thin
layers and are asymmetric in the limb region. The simulation
with A/H¼ 2� 10�4 (Fig. 7b) develops also parasitic folds
everywhere on the thin layers with a distinct asymmetry in
the limb area. The ratio between the initial amplitudes of the
thick and thin layers strongly controls the development of
the parasitic folds, because the smaller the initial amplitude
Fig. 8. (a)e(e) Geometry of five different multilayer models after 50% bulk shortening. The five models only differ in the number of thin layers (1, 5, 10, 15 and

20) between the two thick layers. (f) Internal geometry between the two layers of a double layer system after 50% bulk shortening (see also Fig. 4).
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of the thick layers, the longer the parasitic folds can amplify in
a pure shear environment. The more the amplitudes of the
large fold grow, the stronger the simple shear and flattening
deformation between the limbs, which hampers amplification
of the parasitic folds.

The number of layers influences the amplification rates of
multilayers (e.g., Ramberg, 1961; Schmid and Podlachikov,
2006) and Fig. 8 shows the results after 50% bulk shortening
of five models with different numbers of thin layers. The ratio
of initial amplitude to thickness of the thick layers was
2� 10�4 (such as in Fig. 7b). The parasitic folds evolve differ-
ently for different numbers of thin layers. For one and five thin
layers (Fig. 8a and b), the parasitic folds mainly develop in the
hinge region of the large fold, where they are approximately
symmetric. Between the limbs of the thick layers the thin
layers are almost straight. The 10-layer-model (Fig. 8c) shows
higher amplitude symmetric folds in the hinge region than in
the one- and five-layer models. The amplitudes of the parasitic
folds decrease from hinge to inflexion point of the larger fold.
The parasitic folds near this inflexion point are asymmetric (S-
shaped for the displayed part of the fold). Models with 15 and
20 thin layers (Fig. 8d and e) show even more distinct asym-
metric parasitic fold shapes between the fold limbs of the two
thick layers. They have very well developed S-shapes with
relatively high amplitude. As in the previous models, the am-
plitudes increase towards the hinge of the larger fold, where
the parasitic folds are symmetric. Note that Fig. 8d is the
same as Fig. 7b. The arrangement of the hinges of the parasitic
folds, which initially were lying on top of each other during
the pure shear deformation stage, is close to the shape of the
deformed beams which described the strain in the matrix
(Figs. 8def and 9ae9d, grey lines connect hinges of the par-
asitic folds initially lying on top of each other). The difference
between these five models is the amplification of the thin
layers. If the layer spacing is similar to the layer thickness,
such as here, then the more layers a multilayer stack is
made of (up to a certain saturation value), the faster the indi-
vidual thin layers amplify (e.g., Ramberg, 1961; Schmid and
Podlachikov, 2006). A model with more thin layers leads to
higher amplitudes of the thin layers at the initiation of buck-
ling of the thick layers.

Like in the two-layer model (Fig. 6b), the longest distance
between the thick layers continuously increases (line with
dots, Fig. 9e), and the evolution of the smallest distance
with shortening shows a maximum (line with crosses,
Fig. 9e). This maximum indicates the onset of flattening be-
tween the thick limbs, which decreases the amplitudes of the
parasitic folds (Fig. 9c and d). The average value of all the
Fig. 9. (a)e(d) Four stages of deformation of a multilayer stack with 15 thin layers and two thick layers. (e) The line with dots shows the evolution of the distance

between the two thick layers in the hinge. The distance is normalized by the initial distance between the thick layers. The line with crosses shows the evolution of

the minimum distance between the two thick layers, which occurs between the inflexion points of the thick layers. This evolution of layer distances is very similar

to the case without thin layers between the thick layers (Fig. 6). (f) The line with dots shows the evolution of the average amplitude of the thin layers in the hinge

zone of the large scale fold. The amplitudes are normalized by the initial thickness of the thin layers. The line with crosses shows the average amplitude of the thick

layers normalized by their initial thickness.



1655M. Frehner, S.M. Schmalholz / Journal of Structural Geology 28 (2006) 1647e1657
amplitudes of the thin layers in the hinge region of the larger
fold (line with dots, Fig. 9f) increases continuously as well as
the average amplitude of the thick layers (line with crosses,
Fig. 9f).

The evolution of the distances between the two thick layers
with and without thinner layers is very similar (Figs. 6b and
9e), suggesting that the fold amplification of the thick layers
is only slightly modified by the folding of the thin layers.
The same simulation as shown in Fig. 9 has been performed
without thin layers, keeping the initial distance of the thick
layers the same. The fold shape of the thick layers after
50% bulk shortening is nearly identical for the two simula-
tions, confirming that folding of the thin layers has little effect
on the larger folding (transparent grey shows the two folded
thick layers without thinner layers, Fig. 10).

5. Discussion

The model setup used in this study is close to that used by
Ramberg (1963) and is probably one of the simplest to gener-
ate parasitic folds. Clearly, other rheologies and model setups
may produce comparable results, such as power-law rheology
(Fletcher, 1974), viscoelasticity (Schmalholz and Podladchikov,
1999), anisotropy (Biot, 1965; Mühlhaus et al., 2002) or slip
between layers (Pfaff and Johnson, 1989). However, despite
more complex scenarios, it can be expected that the fundamen-
tal evolution of asymmetric parasitic folds remains the same,
namely that symmetric buckle-folds are first generated and

Fig. 10. The black layers show the folded multilayer system with 15 thin layers

after 50% bulk shortening. The two transparent grey layers (also 50% bulk

shortening) exhibited the same initial conditions than the thick black layers,

but without thin layers in between. The comparison between the thick black

and thick grey layers indicates that the fold evolution of the thick black layers

is only slightly modified by the presence of the thin layers.
then sheared into an asymmetric form by the development of
a larger structure.

We used differences in the ratio of initial amplitude to layer
thickness to delay the amplification of the thick layers relative
to the thin layers. In nature, layers composed of different rock
types are never perfectly flat and undulations with characteris-
tic amplitudes exist due to, for example, sedimentary struc-
tures (e.g., wave ripples) or metamorphic processes (e.g.,
crenulation). The absolute values of the amplitudes of these
undulations can be expected to be often independent of the
thickness of the layers that bear them. For example, the ampli-
tudes of wave ripples will be more or less the same on sand-
stone layers of 10 cm or 1 m thickness. Therefore, the ratio
of amplitude to layer thickness can be expected to be relatively
larger in thin layers than in thick layers, such as assumed in
our study.

Several numerical simulations with a bell-shaped (Biot
et al., 1961) instead of a sinusoidal perturbation on the inter-
faces of the thick layers (Fig. 11) and simulations with viscos-
ity contrasts of 40 and 50 have been performed in addition to
test the robustness of our numerical results. All additional nu-
merical simulations confirm the fundamental results for para-
sitic folding presented in this study.

6. Conclusions

(1) Our numerical simulations verified Ramberg’s (1963) the-
ory of parasitic fold development for Newtonian viscous
materials. Asymmetric, S- and Z-shaped parasitic folds

Fig. 11. Numerical simulation of parasitic folding for more complex geome-

tries and 22 thin layers. The two external layers have different thicknesses

and initially had a bell-shaped perturbation of the layer interface. The thin

layers had initially a random perturbation. In all layers a true wavelength se-

lection took place. The folds in the external layers have different wavelengths

due to their different thickness. The simulation shows both S- and Z-shaped

asymmetric, and M-shaped symmetric parasitic folds.
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originate from symmetric buckle-folds that are sheared
into an asymmetric shape by the relative displacement be-
tween the thick layers that control the larger folds in which
parasitic folds occur.

(2) The timing between the amplification of the parasitic folds
and the amplification of the larger fold controls the devel-
opment of asymmetric folds in the limb zone of the larger
fold. If the larger fold amplifies while the parasitic folds
still have small amplitudes, no asymmetric parasitic folds
develop because early buckles are unfolded by the flatten-
ing between the thick layers in the limbs of the larger fold.

(3) In contrast, the parasitic folds in the hinge zone of the larger
fold remain symmetric (M-shaped) because the deforma-
tion there is dominantly pure shear. These symmetric,
M-shaped parasitic folds always develop independently of
the relative timing between their amplification and that of
the larger folds.

(4) A larger number of thin layers between two thick layers
favour the development of distinct asymmetric parasitic
folds, because a large number of thin layers has a larger
amplification rate and requires less shortening to develop
high amplitude parasitic folds than few layers.
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Appendix

This appendix summarizes the self-developed finite ele-
ment algorithm which was used in this study. The conservation
equations for slow incompressible flow in the absence of body
forces in two dimensions are (e.g., Bathe, 1996; Haupt, 2002):

vsxx

vx
þ vsxy

vy
¼ 0

vsxy

vx
þ vsyy

vy
¼ 0

ðA1Þ

vp

vt
¼�K

	
vvx

vx
þ vvy

vy



ðA2Þ

where sxx and syy are components of the total stress tensor in
the x- and y-direction, respectively, sxy is the shear stress, p is
the pressure, K is the compressibility parameter and vx and vy

are the velocities in x- and y-direction. Eq. (A1) represents
conservation of linear momentum and Eq. (A2) represents
conservation of mass. Eq. (A2) deviates from the standard
form for incompressible flow (i.e. ðvvx=vxÞ þ
�
vvy=vy

�
¼ 0),

but is only applied for very large values of K, so that the result-
ing divergence of the velocity field goes to zero, which means
to 10�15 in this study. Application of Eq. (A2) is often referred
to as the penalty approach for incompressible flow (e.g., Cuve-
lier et al., 1986; Hughes, 1987). The constitutive equations for
a linear viscous rheology are:8<
:

sxx

syy

sxy

9=
;¼�p

8<
:

1
1
0

9=
;

þ 1

3
m

2
4 4 �2 0
�2 4 0

0 0 3

3
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

8<
:

vvx=vx
vvy=vy
vvx=vyþ vvy=vx

9=
;

ðA3Þ

with m the Newtonian viscosity. Discretization of the govern-
ing equations and numerical integration is performed using
the isoparametric Q9/3-element with nine nodes for the biqua-
dratic continuous velocity degrees of freedom and three for the
linear discontinuous pressure degrees of freedom (Fig. A1,
e.g., Hughes, 1987). After discretization the governing equa-
tions are given as (e.g., Hughes, 1987):

K Q

QT � M

K Dt

3
75
(

~v

~pnew

)
¼

8<
:

0

� M

K Dt
~pold

9=
;

2
64 ðA4Þ

where swung dashes denote vectors containing nodal values of
the respective variables. The time derivative in Eq. (A2) has
been replaced by a finite difference quotient with Dt being

Fig. A1. Local reference element used for the numerical solution, with nine

nodes for velocity degrees of freedom (filled circles), three for the pressure de-

grees of freedom (circles) and nine integration points (crosses). x and h are the

local coordinates.



1657M. Frehner, S.M. Schmalholz / Journal of Structural Geology 28 (2006) 1647e1657
the time increment
�
vp=vtz

�
pnew � pold

��
Dt
�
. The three ma-

trices K, Q and M are:

K¼
Z Z

BTDB dx dy; Q¼�
Z Z

BT
GNP dx dy;

M¼
Z Z

NT
PNP dx dy ðA5Þ

where vector NP contains the pressure shape functions and
matrix B and vector BG contain spatial derivatives of the
velocity shape functions in a suitable organized way (e.g.,
Zienkiewicz and Taylor, 1994). The integrations are per-
formed numerically using nine integration points per element
(Fig. A1). Using discontinuous pressure shape functions
allows the elimination of the pressure at the element level.
This elimination leads to a system involving only unknown
velocities:

L~v¼�Q~pold ðA6Þ

where

L¼KþK Dt QM�1QT ðA7Þ

Values of ~pnew are restored during the Uzawa-type iteration
algorithm, during which Eq. (A6) is solved iteratively with up-
dated values of ~pold until the divergence of the velocity con-
verges towards zero (i.e. 10�15, e.g., Pelletier et al., 1989).
After every time step, the resulting velocities are used to
move the nodes of each element with the displacements result-
ing from the product of velocities times time step (i.e. explicit
time integration). Then, the new velocities are again calculated
for the new grid.

The developed finite element algorithm has been success-
fully tested twice. First, by correctly reproducing the analyti-
cal growth rate (Fletcher, 1977) for single-layer folding, and
second, by correctly reproducing the analytical pressure field
around a rigid inclusion (Schmid and Podladchikov, 2003).
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