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Finite-element simulations of Stoneley guided-wave reflection and
scattering at the tips of fluid-filled fractures

Marcel Frehner' and Stefan M. Schmalholz?

ABSTRACT

The reflection and scattering of Stoneley guided waves at the
tip of a crack filled with a viscous fluid was studied numerically
in two dimensions using the finite-element method. The rock sur-
rounding the crack is fully elastic and the fluid filling the crack is
elastic in its bulk deformation behavior and viscous in its shear
deformation behavior. The crack geometry, especially the crack
tip, is resolved in detail by the unstructured finite-element mesh.
Atthe tip of the crack, the Stoneley guided wave is reflected. The
amplitude ratio between reflected and incident Stoneley guided
wave is calculated from numerical simulations, which provide
values ranging between 43% and close to 100% depending on the
type of fluid filling the crack (water, oil or hydrocarbon gas), the
crack geometry (elliptical or rectangular), and the presence of a

small gas cap at the cracktip. The interference of incident and re-
flected Stoneley guided waves leads to a node (zero amplitude) at
the tip of the crack. At other positions along the crack, this inter-
ference increases the amplitude. However, the exponential decay
away from the crack makes the Stoneley guided wave difficult to
detect at arelatively short distance away from the crack. The part
of the Stoneley guided wave that is not reflected is scattered at the
crack tip and emitted into the surrounding elastic rock as body
waves. For fully saturated cracks, the radiation pattern of these
elastic body waves points in every direction from the crack tip.
The emitted elastic body waves can allow the detection of Stone-
ley guided wave-related resonant signals at distances away from
the crack where the amplitude of the Stoneley guided wave itself
is too small to be detected.

INTRODUCTION

Fractures in rocks are of great practical interest not only because
they contribute significantly to the permeability of a rock (e.g.,
Faoro et al., 2009) but also because they can have a significant influ-
ence on seismic waves that pass through fractured rocks. For exam-
ple, Saenger and Shapiro (2002) show with numerical simulations
that the wave velocity of body waves decreases drastically with in-
creasing crack density, Groenenboom and Falk (2000) model nu-
merically and measure in the laboratory that scattering of body
waves at hydraulic fractures is strong enough to determine the frac-
ture dimensions, and Kostek et al. (1998) and Ionov (2007) show
that fractures intersecting a borehole can have a major impact in seis-
mic surveys. One phenomenon of particular interest are Stoneley
guided waves (SGW), a highly dispersive and slowly propagating
wave mode that is bound to a crack (e.g., Ferrazzini and Aki, 1987,
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Ashour, 2000; Korneev, 2008). SGWs also are referred to as crack
waves (Chouet, 1986; Yamamoto and Kawakatsu, 2008), slow
Stoneley waves (Ferrazzini and Aki, 1987) or simply Stoneley
waves in a fracture (Ashour, 2000). They are of interest because of
their ability to develop a resonance when propagating back and forth
along a crack, which “should lead to strongly frequency dependent
propagation effects for seismic waves” (Korneev, 2008). Despite
their potential importance for wave propagation in porous and frac-
tured rocks, SGWs are not considered in existing effective medium
and poroelastic theories, such as the Hudson model (Hudson, 1980,
1981), the squirt-flow model (Mavko and Jizba, 1991; Dvorkinetal.,
1995) or the Biot model (Biot, 1962). Analytical studies of SGW
propagation are available only for infinite straight cracks (Ferrazzini
and Aki, 1987; Ashour, 2000; Korneev, 2008) not taking into ac-
count the reflection and scattering at crack tips and therefore also not
taking into account the resonant behavior of SGWs. Numerical stud-
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ies are rare (e.g., Chouet, 1986; Yamamoto and Kawakatsu, 2008)
and available only for simple crack geometries (usually rectangu-
lar). This paper extends this body of knowledge by studying the
propagation, reflection, and scattering of SGWs at crack tips of dif-
ferent shapes and with a high numerical resolution.

Because SGWs are bound to a crack, they are reflected at the crack
tip and can propagate back and forth along a crack. The resulting res-
onance caused by SGWs propagating in finite fractures is used by
Akietal. (1977), Chouet (1988), and Chouet (1996) to explain long-
period volcanic tremor signals that are observed before volcanic
eruptions and potentially can be used for eruption forecasting. The
reflection coefficient at the crack tip together with the attenuation de-
termines how many times an SGW can propagate back and forth
along a crack and, therefore, how well it can develop a resonance.
Knowing that SGWs cannot be detected at a relatively short distance
away from the crack due to the exponential decay of their amplitude
(Ferrazzini and Aki, 1987), the way the tremor signal is transmitted
to recording stations at the earth’s surface remained unclear. Fer-
razzini and Aki (1987) suspect that “reflection at the crack tip should
provide an important source of radiation in the case of a finite crack.”
However, the reflection of SGWs at the crack tip and the correspond-
ing radiation of body waves from the crack tip have not been investi-
gated in detail until now, which is why they are the main subject of
this paper. The part of the SGW that is not reflected is scattered at the
crack tip and P- and S-waves are radiated away from the crack tip.
The radiation pattern of these P- and S-waves is of great importance
for measuring the resonant behavior of the SGW (i.e., the tremor sig-
nal). Similar to volcanic areas, SGWs can be of great importance in
fractured reservoirs. Frequency-dependent wave-propagation phe-
nomena in exploration seismology can help to characterize subsur-
face fractured reservoirs.

The study of SGWs is a multiscale problem where typical wave-
lengths can be orders of magnitudes larger than the characteristic
size of the cracks. For numerical simulations, this “presents a major
computational challenge” (Korneev, 2008). The standard numerical
method for simulating wave propagation in fractured media is the fi-
nite-difference method (FDM) using a rectangular numerical grid
(Chouet, 1986; Kostek et al., 1998; Groenenboom and Falk, 2000;
Saenger and Shapiro, 2002; Kriiger et al., 2005). The numerical
method used in this study is the finite-element method (FEM) (e.g.,
Zienkiewicz and Taylor, 2000; Cohen, 2002) using an unstructured
numerical mesh. A similar method also using an unstructured mesh
is, for example, the discontinuous Galerkin method described by
Kiser and Dumbser (2008). The unstructured mesh allows resolving
geometrically complex objects with strong material contrast (e.g.,
the tip of a crack) very finely and accurately without the need to have
ahigh resolution elsewhere in the domain (Frehner et al., 2008).

In contrast, rectangular grids always approximate objects in a
staircase-like way, which leads to numerical inaccuracies no matter
how fine the numerical grid is. For time integration in wave-propa-
gation simulations, explicit schemes are most common. The largest
explicit time increment allowed for stable numerical solutions is de-
termined by the smallest spatial resolution and the largest wave ve-
locity in the domain (Virieux, 1986; Higham, 1996; Saenger et al.,
2000). Both parameters take extreme values when SGWs are simu-
lated. Spatial resolution needs to be very fine around the crack tip
and the dispersive P-waves in the viscous fluid have a velocity tend-
ing to infinity for very high frequencies. Small-amplitude numerical
errors or noise, which is commonly characterized by high frequen-
cies, can grow during the simulations and lead to numerical instabil-

ities. One possibility to avoid these instabilities in viscous fluids is
defining frequency-dependent material parameters (Saenger et al.,
2005), which allows defining the high-frequency limit of the disper-
sive waves from infinity down to a finite value. The alternative used
in this study is an implicit time-integration method (e.g., Chen et al.,
2008; Frehner et al., 2008), which does not require fulfilling any sta-
bility criterion. Material parameters in the numerical algorithm can
be implemented exactly the same way they are written in the consti-
tutive equations and do not have to be made frequency dependent.

The paper begins with a description of the mathematical and geo-
metrical model. Properties of the SGW as a function of the model
setup and the different fluids used in this study are described using
analytical expressions of Ferrazzini and Aki (1987) and Korneev
(2008). A brief introduction to the applied two-dimensional (2D)
FEM is given before the numerical results are shown. The reflection
of an SGW at the tip of a crack is quantified as a function of crack ge-
ometry and the type of fluid filling the crack. The radiation pattern of
elastic body waves that are emitted into the surrounding rock is de-
scribed in detail. The paper ends with simulations for two advanced
model setups (two intersecting fractures and fractures filled with two
different fluids) and a discussion about applicability of the modeling
results to natural environments.

MODEL

The propagation of SGWs is studied with a 2D model with Carte-
sian coordinates x and y. The mathematical description and the geo-
metrical setup are described below.

Mathematical model

The 2D formulation used here is a plane-strain approximation of
the full 3D formulation, i.e., all spatial derivatives in the third dimen-
sion, the out-of-plane displacement, and all out-of-plane strains are
equal to zero. However, the out-of-plane normal stress is allowed to
have a finite value, which depends only on the two in-plane normal
strains. The plane-strain approximation in 2D is equivalent to a 3D
formulation with geometries extending to infinity in the third dimen-
sion (i.e., all material parameters are constant in the third dimen-
sion). For this formulation, standard material parameters can be used
that are defined in 3D (e.g., elastic bulk modulus K). A full 3D for-
mulation is computationally expensive and is not used in this study.
Results obtained with the 2D plane-strain formulation are applicable
to cracks with a relatively round crack surface (i.e., penny-shaped
cracks) but not to strongly elongated cracks (i.e., cigar-shaped
cracks).

The force-balance equation (or conservation of linear momen-
tum) that describes the state of the acting forces in 2D (Love, 1927,
Lindsay, 1960; Achenbach, 1973; Shames and Cozzarelli, 1997; Aki
and Richards, 2002; Pujol, 2003) is given by

= i 0 i o-u
o N dy o
af Ly 2 all "] (1)
RIS g,
& dy ox & 2,
(J)

BT

where p is density and i is the second time derivative of the displace-
ment vector. The symbol ~ denotes the continuous nature of u (not
yet discretized with any numerical method). Vector o contains the
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three independent components o ;; of the symmetric total stress ten-
sor (i.e., oy, 0y, and o,,). Compressive stresses are defined as nega-
tive. Superscript 7' denotes the transpose of a matrix. The deforma-
tion behavior of the medium is divided into a bulk (or volumetric)
part and a deviatoric (or shear) part. Therefore, the vector o is also
divided into a bulk and a deviatoric part (Shames and Cozzarelli,
1997):

O -p Se
Cp (=Y P H 5w (- (2)
o, 0 Sy

S

Vector s contains the three independent components s;; of the sym-
metric deviatoric stress tensor and p is pressure (or mean stress).
Vector &€, containing the three independent components (i.e., two
normal components &,, and &,,, and one shear component v,,) of the
symmetric total strain tensor, is divided into a bulk and a deviatoric
partin a similar way:

&, du, [ox 0/3 e,
&y (= ou, /oy =10/3r+1e, . (3)
Ve u,/dy ou R / ox 0 8.
SIES S
€ e

Vector e contains the three independent components (i.e., two nor-
mal components e,, and e,,, and one shear component g,,) of the
symmetric deviatoric strain tensor and O is the bulk strain (i.e., €,,
+ &,, + &, where g, is equal to zero due to the plain-strain formula-
tion). Two different types of media are considered in this study: the
rock (solid, superscript s) and the fluid (superscript f) that fills the
crack. The behavior of both media is the same as in Korneev (2008).
The bulk deformation behavior of both media is linear elastic, while
the deviatoric deformation behavior of the two media is different.
The deviatoric deformation of the solid rock is linear elastic and that
of the fluid is linear viscous. The constitutive equation for the elastic
bulk deformation of both media is

—p=K"0, (4)

where K*' is the elastic bulk modulus of the solid and the fluid, re-
spectively. The constitutive equation for the deviatoric deformation
of the elastic solid is

s.xx 2“ 0 O exx
Sy (=] 0 21 0 |yey (s (5)
Sxy 0 0 M 8 Xy

where u is the elastic shear modulus. The constitutive equation for
the viscous deviatoric deformation of the fluid is

s.| (27 O Of]e
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where 7 is the shear viscosity. Vector € is the time derivative of vec-
tor e. The formulation for total stress in the elastic solid is found by
combining equations 2-5 as

Oy K*+4u/3 K—=2up/3 0

oy (=|K —2u/3 K+4u/3 0
Oy 0 0 M
ot/ dx
X ot 1y : (7)

it /dy + dit,/dx

The formulation for total stress in the fluid is found by combining
equations 2—4 and 6 as

T K Kf 0 Oily/9x
o, (=|K K' 0 dit, /9y
Ty 0 0 0]{oi,/dy + dit,/ox
493 —29/3 0 Il ox
+|—2n/3 49/3 0 i,/ 9y

0 O I it oy + i, fox

(8)

Equation 7 describes the stress-strain relation of a fully elastic medi-
um in 2D where both the bulk and shear deformation behavior are
elastic. Therefore, P- and S-waves can propagate in such a medium
without velocity dispersion or attenuation. Equation 8 describes the
stress-strain relation of a so-called viscoacoustic medium (a viscous
fluid) in 2D. Only the bulk deformation behavior is elastic, while the
shear deformation behavior is viscous. Therefore, shear waves exist
exclusively due to viscosity and have a diffusive character. On the
other hand, P-waves can propagate in such a medium but they are at-
tenuated by the viscous damping terms. The formulation is very sim-
ilar to the one-dimensional formulation of a medium using a Kelvin-
Voigt model (Bourbie et al., 1987; Carcione, 2001). The P-wave
phase velocity in the fluid V4 is dispersive with a low-frequency limit
equal to Ve = \Wp‘ For increasing frequency, the phase velocity
increases continuously and tends to infinity without having a high-
frequency limit. The quality factor for P-waves in such a viscoacous-
tic fluid Q¥ is equal to infinity (no attenuation) in the low-frequency
limit and QFf = 0 (purely diffusive propagation type) in the high-fre-
quency limit. Setting the shear viscosity # to 0 leads to a purely
acoustic formulation, also called an inviscid fluid. P-waves in an in-
viscid fluid propagate with the velocity V. They are neither disper-
sive nor attenuated. Equations 7 and 8 can be written in a more gener-

al way as .
o = D + Dy €, 9)

where, in the purely elastic case, D, is the matrix given in equation 7
and D ;.. is equal to 0. In the viscoacoustic case, Dy, is the first matrix
givenin equation 8 and D, is the second matrix given in equation 8.
Equation 9 is substituted into equation 1 to yield the total equations
of motion:

p*'u=B'D,Bu + B'D,; Bu. (10)

Geometrical model

To simulate SGWs and their behavior at a crack tip, the three mod-
el setups sketched in Figure 1 are used. The first model (labeled 1)
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consists of a straight horizontal crack of thickness 2 = 3 mm that
runs through the whole model domain and is centered at y = 0. This
model does not contain a crack tip. The SGW propagates undis-
turbed along the crack and can be compared with the analytical solu-
tions for the phase velocity (Ferrazzini and Aki, 1987; Korneev,
2008). The second model (labeled 2) consists of half a crack that has
an elliptical shape with a horizontal major semiaxis L = 0.5 m and a
vertical minor axis £ = 3 mm. The tip of the crack is located at x = 0
and y = 0. The third model (labeled 3) consists of a straight horizon-
tal crack of length L = 0.5 m and thickness # = 3 mm, ending at a
flat crack tip (i.e., rectangular crack geometry). The tip of the crack is
located at x = 0 and y = 0. In both the second and the third model,
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Figure 1. Sketches of the three model setups (labeled 1 to 3) used for
2D numerical simulations: A crack filled with a fluid is surrounded
by an elastic rock. The sketches are not to scale and the aspect ratio of
the figure is not correct for visualization reasons, i.e., the crack thick-
ness appears much larger than it actually is. All lengths are normal-
ized with the crack thickness 4. Model 1 (dashed line) is of a straight
horizontal crack with constant thickness # =3 mm that runs
through the whole model domain. Model 2 (solid line) represents
half a crack that has an elliptical shape and ends inside the model do-
main. Model 3 (stippled line) represents a rectangular crack with
constant thickness 47 = 3 mm that ends inside the model domain at a
flat crack tip. In all models, two virtual vertical receiver lines are
placed in the positive y-direction. Hatched walls represent the rigid-
wall boundary conditions applied all around the model except for the
position where the crack is in contact with the left boundary. There,
time-dependent boundary conditions, indicated with three arrows,
act as the external source.

the SGW propagates along the crack and is partly reflected at the
crack tip. In all three model setups, two vertical lines with virtual re-
ceivers recording the displacement field are located at x/h = —70.0
(line 1) and x/h = —3.3 (line 2), respectively. Because all model set-
ups are symmetric around y = 0, receivers are only positioned in the
positive y-direction.

In all three models, the boundaries are far enough away from the
crack to avoid boundary effects. Rigid wall boundary conditions (all
displacements u = 0) are applied all around the model except for the
position where the crack is in contact with the left boundary. There,
only the displacement in the y-direction is forced to vanish and the
displacement in the x-direction is prescribed by the time- and space-
dependent boundary condition

— _ 2 2
Fty) = —Ao—z(th W exp{ e thO) Hl - (%) }

for —h/2=y=h/2 and x = —L, (11)

which acts as the external driving force. Equation 11 implies that the
source initiating the SGW is located inside the crack. The time-de-
pendent part of F(#,y) is the first derivative of a Gaussian, centered at
time #,. The space-dependent part of F(z,y) is a hyperbola with maxi-
mum amplitude 1 aty = 0 and zero amplitude aty = *h/2. The ap-
plied parameters are Ay =10"2m, 7=5X10"3s, and 7,=2
X 10~* s. This external source contains all frequencies with a cen-
tral frequency f, = 4500 Hz. This central frequency may seem high
in the context of exploration seismology. But, on one hand, the cen-
tral frequency used here is not meant to be realistic for a source used
in exploration seismology. Rather, it reflects the fast opening or
propagation of a crack. On the other hand, the resonance frequency
of an SGW propagating back and forth along a finite crack depends
on the wave velocity while the length of the crack, and the central
frequency is a function of the applied source. The central frequency
of the source was deliberately defined relatively high to be distin-
guishably different from the possible resonance frequency of the
SGW.

MODEL PROPERTIES

For the second and third model setups (Figure 1), the aspect ratio
of the crack is (2L)/h = 333. In this study, the elastic rock always
has the same properties and different fluids are defined to fill the
crack. Table 1 lists the material parameters of the individual media.
Properties for the elastic rock and for water, oil, and hydrocarbon gas
agree with values of Ferrazzini and Aki (1987), Mavko et al. (2003),
and Korneev (2008). Table 2 lists the properties of the whole model
(i.e., fluid-filled crack and surrounding rock) and of the SGW. For
comparison, the two dimensionless parameters C (crack stiffness)
and F (viscous damping loss) defined by Chouet (1988) as

K'2L
C=—— (12)
Mmh
and
1292L
= 13
v (13)
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are given in Table 2. Formulas for calculating phase velocities of the
SGW in Table 2 are given by Ferrazzini and Aki (1987) and Korneev
(2008) for inviscid and viscous fluids, respectively, and are not re-
peated here. For the chosen material parameters, according to Korn-
eev (2008), the model setup lies in the thick fracture regime (see
Equation 38 of Korneev, 2008). Also, for the setup with an elliptical
crack geometry (i.e., variable crack thickness), at least 99% of the
crack lies in the thick fracture regime. Only very close to the tip, the
crack becomes more narrow and eventually lies in the thin fracture
regime.

To normalize the different wavelengths in the system, crack thick-
ness h can be used. For example, the applied material and source pa-
rameters lead to a ratio of A/ h = 170, where A}, is the wavelength
of a P-wave propagating in the elastic solid with the central frequen-
cy of the external source. This shows that the crack is two orders of
magnitudes thinner than the wavelength of a P-wave in the surround-
ing rock. The phase velocity of the SGW is a function of the elastic
and viscoacoustic parameters of the rock and the fluid filling the
crack, as well as the crack thickness and frequency. Dispersion
curves for both inviscid and viscous fluids (Ferrazzini and AKki,

Table 1. Elastic and viscoacoustic material parameters for the different media used in this study. Superscripts s and f denote
properties of the elastic rock (solid) and of the fluid, respectively. The dispersive P- and S-wave phase velocity for viscous fluids
Vi and V£ and the corresponding quality factor Q5 is calculated for the central frequency of the external source. The
low-frequency limit of V% (called V) is equal to V% for an inviscid fluid. The S-wave in the viscous fluid exist exclusively due to
viscosity and has a diffusive propagation type. The corresponding quality factor Qf is equal to zero. The P- and S-wave phase
velocity for the elastic rock is not dispersive and the corresponding quality factors O} and Qg are infinitely large.

Solid rock
Medium (superscripts) Water Oil Gas
Bulk modulus K (GPa) 5 2.2 1.3 0.022
Ratio K/K* 1 0.44 0.26 0.0044
Shear modulus u (GPa) 6 — — —
Shear viscosity 7 (Pa.s) — 1X1073 1X10°2 2X1073
Ratio 7/ 7" — 1 10 0.02
Density p (kg/m?) 2500 1000 800 100
Ratio p/p* 1 0.4 0.32 0.04
P-wave phase velocity Vp (m/s) 2280 1483 1275 469
Ratio Vp/V} 1 0.65 0.56 0.21
Low-frequency limit of Vi = V¢ (m/s) — 1483 1275 469
Ratio Ve/V} — 0.65 0.56 0.21
Quality factor of P-wave in viscous fluid QF — 5.8x107 3.4X10° 2.9X%107
S-wave phase velocity Vs (m/s) 1550 0.238 0.841 0.106
Ratio Vs/V} 0.68 1.0Xx10~* 3.7X10°4 0.5x10°*

Table 2. Properties of the crack and of the SGW for different fluids that fill the crack. Superscripts s and f denote properties of
the elastic rock (solid) and of the fluid, respectively. All properties are calculated for the particular values for the crack
geometry, the material properties of the solid and the central frequency of the external source used in this study. The phase
velocity of the SGW is calculated using the solutions of Ferrazzini and Aki (1987) and Korneev (2008) for inviscid and viscous

fluids, respectively.

Type of fluid Water Oil Gas
Crack stiffness C = (2K'L)/( wh) 122 72 1.2
Viscous damping loss F = (1292L)/(p'h2V}) 5.8x10°* 73.1Xx10°* LIX1074
Phase velocity of SGW 586 609 460

for viscous fluids Vsgw (m/s)

Ratio Vsgw/ V5 0.26 0.27 0.20
Ratio Vggw/ V5 0.40 0.48 0.98
Phase velocity of SGW for inviscid fluid Viges (m/s) 587 611 460
Ratio Viisid/ s 0.26 0.27 0.20
Ratio Viiid/ . 0.40 0.48 0.98
Quality factor of SGW Qsgw 528 144 1189
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1987; Korneev, 2008) show a decrease of the phase velocity for low
frequencies. For zero frequency, the phase velocity is zero. The high-
frequency limit of the phase velocity of the SGW is that of a Scholte
wave (Carcione and Helle, 2004), which is the interface wave at a
single fluid-solid interface.

Figure 2 shows the phase velocity and Figure 3 the quality factor
of the SGW propagating along a straight crack (first model in Figure
1) for a range of material parameters of the fluid, together with the
parameters used in this study (Table 1) for constant material parame-
ters of the solid and constant values of / and f,. Analytical formulas
for producing Figures 2 and 3 are given by Ferrazzini and Aki (1987)
and Korneev (2008) for inviscid and viscous fluids, respectively, and
are not repeated here. For material parameters of water, oil and hy-
drocarbon gas, the absolute phase velocity Vsgw for inviscid fluids
(Figure 2a) lies within a very narrow range of 0.2 to 0.27 times of the
P-wave phase velocity in the elastic solid V}. However, compared to
the acoustic P-wave phase velocity in the inviscid fluid V¢, the phase
velocity of the SGW varies considerably for the different fluids
(from 0.4 X V. for water to 0.98 X V. for hydrocarbon gas). Plotting
the fluid parameter p' versus K" for water, oil, and hydrocarbon gas
results approximately in a straight line in double logarithmic repre-
sentation (gray line in Figure 2a). This straight line is used as the ab-
scissa in Figure 2b and Figure 3 where the ordinate is the normalized
viscosity of the fluid. The viscosities of water, oil, and hydrocarbon
gas are too small to have a significant effect on the phase velocity of
the SGW compared to the inviscid case (bottom of Figure 2b). At the
same time, the quality factor of the SGW (Figure 3) is relatively large
(more than 100) for the applied fluid viscosities and only very little
attenuation of the SGW is expected.

NUMERICAL METHOD

The algorithm used for numerical simulations is an extended ver-
sion of the algorithm presented and benchmarked in Frehner et al.
(2008). It employs the finite-element method (FEM) (Hughes, 1987;
Bathe, 1996; Zienkiewicz and Taylor, 2000) for discretization of the
spatial derivatives in equation 10. The particular finite element used
is a seven-node isoparametric triangular element with biquadratic
continuous interpolation functions (Zienkiewicz and Taylor, 2000).
The unstructured numerical mesh is generated by the software Tri-
angle (Shewchuk, 1996; Shewchuk, 2002). It is generated in such a
way that interfaces between different media coincide with element
boundaries of the finite-element mesh. Figure 4 shows two subfig-
ures on different scales of the same finite-element mesh that dis-
cretizes the model setup with the elliptical crack. The finite-element
algorithm used comprises the Galerkin weighted-residual method
(Zienkiewicz and Taylor, 2000), lumped mass matrix (Bathe, 1996;
Cohen, 2002), and Gauss-Legendre quadrature on seven integration
points (Zienkiewicz and Taylor, 2000). Equation 10, discretized in
space with the FEM, takes the form

M, i + Cu + Ku =0, (14)

where M;, C, and K are the lumped mass matrix, the damping ma-
trix, and the stiffness matrix, respectively. Displacement vector u
contains the unknown displacements u, and u, at all discrete posi-
tions in the finite-element mesh. Note that the symbol ~ has been re-
moved from u compared to equation 10 because it is now discretized
in space (i.e., u contains only the values at numerical nodes). Time
derivatives are discretized with an implicit version of the Newmark
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Figure 2. (a) Contour lines of the SGW phase velocity Vsgy for arange of acoustic material parameters of the fluid and for zero viscosity (inviscid
fluids). (b) Contour lines of the SGW phase velocity Vsaw for a range of viscoacoustic parameters of the fluid. The abscissa of (b) is a linear rela-
tionship between log;o(p’) and log,(( K*) that approximately connects the material parameters p and K* of water, oil, and hydrocarbon gas and is
shown in (a) as a gray line. In both (a) and (b), Vsgw is divided by the P-wave phase velocity in the elastic rock V; and by the P-wave phase veloc-
ity in the viscoacoustic fluid V& (V. for the inviscid case in (a)). Material parameters for the solid, the crack thickness , and the central frequency
of the waves f; are constant in both (a) and (b). Material parameters of the inviscid (acoustic) and viscoacoustic fluids used in this study (water,
oil, and hydrocarbon gas) are indicated as full and open circles, respectively.
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algorithm (Zienkiewicz and Taylor, 2000). It is a predictor-corrector
algorithm based on a finite-difference formulation:

. 1 1 1-2p
ﬁEridllcuon — —u, — —flk — ﬁks
Af At 2
Predictor: o P #
—— 0% Y. Y .
uEridllcuon = ———u + (] — —)uk + <] — —)Atuk;
At
p b Alas)
Solution: w;, = — M, + C+K
k+1 BAtz L BAt
% (Cl.lglfd]imon + MLﬁllzridliction);
(16)
.. __ . prediction
W =W+ ,BAtzukH’
Corrector: (17)
. __ pyprediction L .
u =u + W15
k+1 k+1 BAt k+1

Subscript k is the index of any discrete time interval and At is the
time increment. For the two Newmark parameters 3 and vy, the opti-
mal values ofi and % are chosen (Newmark, 1959; Bathe, 1996). Be-
cause the time integration method is implicit, no stability criterion
for the time increment has to be fulfilled and the time increment Az
can be chosen independently from the spatial resolution. This allows
having a very fine spatial resolution (Figure 4) without the need of a
very small time increment. The time increment is chosen in such a
way that a P-wave in the elastic rock travels the distance 2L in 2000
time steps. Spatial resolution is chosen in such a way that the wave-
length of the SGW wave is resolved with at least 80 numerical
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Figure 3. Contour lines of the logarithm of the quality factor of the
SGW Qscw for a range of viscoacoustic parameters of the fluid. The
abscissa is a linear relationship between log;o(p") and log,o(K") that
approximately connects the material parameters p' and K* of water,
oil, and hydrocarbon gas and is shown in Figure 2a as a gray line.
Material parameters for the solid, the crack thickness /, and the cen-
tral frequency of the waves f are kept constant. Material parameters
of the viscoacoustic fluids used in this study (water, oil, and hydro-
carbon gas) are indicated as open circles.

points. Propagation velocity of the very slow diffusion-type S-wave
in the viscous fluid (i.e., diffusion velocity) is orders of magnitude
lower than all other waves in the model (see Table 1). Therefore, for
the simulated time span, the S-wave in the fluid is quasi-stationary.
However, the most important effect of viscosity, i.e., the damping of
all the different propagating waves, is correctly simulated in the
model. The numerical algorithm is written in MATLAB and the sys-
tem of equations is solved with a standard direct solver provided by
MATLAB. Simulations were performed on one CPU on a standard
workstation. The FEM for wave propagation also can be used in
combination with explicit finite-difference time-integration
schemes or with finite-element time-integration schemes. Different
schemes are presented and compared in Frehner et al. (2008).

Benchmark of the numerical code

A modified version of the numerical code is benchmarked in Freh-
ner et al. (2008) for a different geometrical setup comprising fully
elastic and acoustic media but no viscoacoustic media. Figure 5
shows the phase-velocity dispersion curves of an SGW calculated
for a straight crack and for the model parameters displayed in the fig-
ure. Analytical solutions are taken from Ferrazzini and Aki (1987)
and Korneev (2008) for acoustic (inviscid) and viscoacoustic fluids,
respectively. Five numerical simulations were performed with dif-
ferent central frequencies of the external source. The model consist-
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Figure 4. Two subfigures on different scales of the same numerical
finite-element mesh discretizing the model with the elliptical crack
(second model in Figure 1). Black elements have material parame-
ters of the viscoacoustic fluid. Gray elements have material parame-
ters of the elastic rock. The spatial resolution of the mesh varies
strongly, being very fine inside and close to the crack. In both subfig-
ures, it is not possible to show the entire crack and the entire numeri-
cal mesh because the numerical domain is much larger.
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10° . : ing of a straight crack (Figure 1, first model) is used for comparison
Legend with the analytical solutions. The velocity of the SGW calculated
___Fe"azj:'"l: i :z E:Z:;; sl 7 from the time shift between measurements at the two receiver lines

"""""""" K:r:eev oo o /// (Figure 1) is plotted on top of the analytical solutions. These numeri-

® Numsrical resulls cally calculated velocities agree well with the analytical solutions.

Because the rest of the study considers only the thick fracture regime
defined by Korneev (2008), the benchmark is performed only for
this regime.

Model parameters

| h=3x10®m | NUMERICAL RESULTS

s f
107} Zs B ;jl;ap - gf _ TXG1 2?3 Pas || In the following, results of the propagation, reflection, and scatter-
0° = 270049/ pf =1000 k9/,3 ing of SGWs are presented that are derived from different numerical
2 = = » simulations.
fh/ Ve 10 10 10
Figure 5. Phase velocity dispersion curve for an SGW propagating Radiation of elastic body waves from the crack tip
along a straight crack for the displayed model parameters. Ferrazzini .
and Aki (1987) provide an exact (their equation 14b) and an approxi- The SGW is bound to the crack and cannot propagate further
mate (their equation 16, also presented in equation 1 in Korneev, when the crack ends. It must be (partly) reflected at the crack tip. Fig-
2008) solution for an infinite crack filled with an inviscid (acoustic) ure 6 shows the snapshots of a simulation of an SGW propagating
fluid. In his equation 40, Korneev (2008) provides a solution for a from left to right along an elliptical crack (second model in Figure 1)

crack filled with a viscoacoustic fluid. Numerical results are derived

from five simulations using the first model in Figure 1 with different filled with viscous water. Panels (a) and (b) show the incident SGW,

central frequencies fj in the external source. The phase velocity of which is almost unaffected by the presence of the crack tip. Because
the SGW Vyqy is normalized with the phase velocity of a P-wave in the crack thins towards the crack tip due to its elliptical shape, the
the rock V}. The frequency f'is normalized with V}/h. SGW slows down toward the crack tip. Therefore, even though the
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Figure 6. Snapshots of the 2D displacement field of a simulation of an SGW propagating along an elliptical crack (second model in Figure 1)
filled with viscous water. Contour lines are defined at values =1 X 1078 m, £3X 107 %m, =1 X107 m, £3X 107" m,and 1 X 10~° m.
Upper panels show the x-component of the displacement field u,. Lower panels show the y-component of the displacement field u,. Panels from
left to right represent progressive points in time, with time indicated between the panels. Axis labels are only given in the left and lower panels
but are valid for all panels. The SGW is partially reflected at the crack tip and elastic body waves are emitted from the crack tip into the surround-
ing rock.
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SGW has not reached the crack tip yet, it is slightly deformed at its
front. The regular spacing of the logarithmically plotted contour
lines demonstrates the exponential decay of the amplitude away
from the crack (Ferrazzini and Aki, 1987). The amplitude decays
more than one order of magnitude within one wavelength of the
SGW. Panels (c) and (d) show the SGW as it starts being reflected at
the crack tip. Also, a part of the wave energy is transferred to the sur-
rounding elastic rock in the form of body waves. The part of the body
wave in panel (c) propagating parallel to the crack away from the
crack tip (i.e., along the line y = 0) is a P-wave because the displace-
ment direction and the propagation direction are parallel. All other
visible body waves propagating with a certain angle to the crack
away from the crack tip are combinations of P- and S-waves. The ex-
act geometry of the P- and S-waves is not calculated from the dis-
placement field and is not displayed here. In panels (¢) and (f), the in-
cident and reflected wavetrains of the SGW interfere destructively
and the amplitude close to the crack tip is relatively small. Panels (g)
and (h) show the final phase of the reflection process. The SGW now
propagates from right to left away from the crack tip.

Interestingly, the radiation pattern of the body waves around the
crack tip point in every direction from the crack tip, which leads to
the interpretation that the crack tip acts like a point diffractor for the
SGW. This interpretation can be understood because the width of the
crack and, therefore, the size of the crack tip, are orders of magni-
tudes smaller than the wavelength of the SGW. In all panels of Figure
6, the interference of the incoming and reflected SGW trains leads to
a node (zero amplitude) exactly at the crack tip. Therefore, the re-

flection pattern of the SGW can be compared to a reflection of a 1D
wave propagating in a medium with lower impedance at the inter-
face to a medium with higher impedance.

Figure 7 shows snapshots of a simulation of an SGW propagating
from left to right along a straight crack with a flat crack tip (third
model in Figure 1) filled with viscous water. Unlike in Figure 6, the
phase velocity of the SGW does not change along the crack due to
the constant thickness of the crack. Therefore, the individual snap-
shots in Figure 7 are not displayed for the same points in time as in
Figure 6 but it was tried to display the same stages of the reflection
process to make Figures 6 and 7 comparable. The reflection pattern
of the SGW at the flat crack tip is very similar to the one at the ellipti-
cal crack tip. However, the wavetrain is not compressed towards the
crack tip because the SGW does not slow down towards the crack
tip. Similar to the elliptical crack tip, the radiation pattern of body
waves around the flat crack tip point in every direction from the
crack tip at the end of the reflection process. However, a major differ-
ence between the two geometrical setups is the amplitudes of these
body waves in the elastic solid, with the amplitudes being consider-
ably higher for a flat crack tip.

Reflection of the SGW at the crack tip

As seen above, not all of the wave energy of the SGW is reflected
at the crack tip but a part is radiated into the surrounding rock in the
form of elastic body waves. Figure 8 displays the displacement-time
signal at two receivers on receiver line 1 (Figure 1), one inside and
one outside the crack, for a simulation of an SGW being reflected at
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Figure 7. Same as Figure 6 but for a rectangular crack with a flat crack tip (third model in Figure 1). Note that the time of the snapshots is not the
same as in Figure 6 because the SGW travels with a slightly different velocity.
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the tip of an elliptical crack (second model in Figure 1) filled with
viscous water. The incident and reflected SGWs are well separated
from each other in time. To quantify the reflected part of the SGW,
Figure 9 shows the amplitude ratio R between reflected and incident
SGW for different model setups and for different fluids filling the
crack. Here, the term reflection coefficient is avoided because not
only the amplitude changes but also the shape of the SGW when it is
reflected. Values of R are calculated from the displacement-time sig-
nals at receivers on receiver line 1 (Figure 1), like the example
shown in Figure 8. For each simulation two values for R are calculat-
ed, one at receivers inside the crack in the viscoacoustic fluid and one
for receivers outside the crack in the elastic rock. Values labeled “oil
with gas cap, elliptical crack tip” are discussed later. Values plotted
for material properties of water (values to the right of Figure 9) cor-
respond to the two simulations shown in Figures 6 and 7. The ampli-
tude of the SGW reflected at the tip of an elliptical crack filled with
water is around 77% of the amplitude of the incident SGW and only
around 43% when reflected at the flat crack tip. This is remarkable
because the size of the crack tip is orders of magnitude smaller than
the wavelength of the SGW but still has a big impact.

The difference in reflection behavior also explains the amplitude
difference of the radiated body waves shown in Figures 6 and 7. The
part that is not reflected is radiated into the surrounding rock. There-
fore, a stronger reflection (elliptical crack) leads to smaller ampli-
tudes of the radiated body waves. For different fluids filling the ellip-
tical crack, the reflection is also different. Hydrocarbon gas leads to
the strongest reflection with R of almost 100%. This also means that
from a crack filled with hydrocarbon gas, only small-amplitude body
waves are radiated when the SGW is reflected at the crack tip. An
SGW propagates both in the fluid that fills the crack and in the rock
surrounding the crack. Itis therefore unclear how to calculate the im-
pedance for an SGW. However, the strong reflection for a crack filled
with hydrocarbon gas can be qualitatively understood by consider-
ing the impedance of the P-wave in the fluid (VK'p'), which is much
smaller for hydrocarbon gas than for water and oil. Therefore, the
impedance contrast to the surrounding rock is much bigger, which
leads to a strong reflection.
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Figure 8. (a) Displacement-time signal in the x-direction at a receiv-
er inside the crack on receiver line 1 (Figure 1). (b) Displacement-
time signal in the y-direction at a receiver outside the crack on re-
ceiver line 1. Both traces are obtained from a simulation of an SGW
propagating along an elliptical crack (second model in Figure 1)
filled with viscous water. Labels for the time axis are only given in
(b) but are valid for (a) also.

Due to the interference between incident and reflected SGWs, the
amplitudes add up close to the crack tip. Figure 10 shows this effect
and how the amplitude decays away from the crack along receiver
line 2 (see Figure 1) for different model setups and different fluids
filling the crack. The amplitude distribution shows the same expo-
nential decay as discussed in Ferrazzini and Aki (1987). As a refer-
ence (solid gray line), the amplitude decay along receiver line 1 for
an elliptical crack filled with water is also given in Figure 10. For this
case, the wavelength of the SGW is around 40 times the crack thick-
ness h. At this distance away from the crack, the amplitude decay is
more than an order of magnitude. The amplitude at the crack inter-
face atreceiver line 2 for a water — or oil-filled crack is increased by
about 30% due to the interference between incident and reflected
SGWs. Also, the two crack geometries (elliptical and rectangular
crack) that are filled with water do not influence this factor signifi-
cantly. The same amplitude for a crack filled with hydrocarbon gas is
increased by about 120%. This is remarkable because for a reflection
as strong as R = 100% (Figure 9), a maximal increase in amplitude
close to the crack tip of 100% is expected. However, the wave veloc-
ity of the SGW also decreases towards the crack tip due to the ellipti-
cal shape of the crack. This lets the amplitude of the SGW further in-
crease, which adds up to the maximal 100% increase in amplitude
due to the reflection process. For all cases shown in Figure 10, even
though the amplitude at the crack interface is increased, the expo-
nential decay away from the crack happens within a relatively short
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Figure 9. Absolute value of the amplitude ratio | R| between reflected
and incident SGW of an SGW that is reflected at the tip of a crack.
The abscissa is the same as in Figure 2b and Figure 3. R, is calculated
from the displacement-time signals in the x-direction of eight receiv-
ers inside the crack on receiver line 1 at position y/h = 0t0 0.35. R,
is calculated from the displacement-time signals in the y-direction of
six receivers outside the crack on receiver line 1 at position y/h
= 0.45105.5. Values labeled “viscous fluids, elliptical crack tip” are
derived from simulations of an elliptical crack (second model in Fig-
ure 1) fully saturated with the corresponding viscous fluid. Values la-
beled “flat crack tip” are derived from a simulation of a rectangular
crack with a flat crack tip (third model in Figure 1) fully saturated
with viscous water. Values labeled “oil with gas cap, elliptical crack
tip” are derived from a simulation of an elliptical crack (second mod-
el in Figure 1) partially saturated with viscous oil and having a small
gas cap at the crack tip. These values are plotted at (K" + K%)/2.
All values of | R| are corrected for the intrinsic attenuation due to vis-
cous damping in the fluids.
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distance. For cracks filled with water or oil, the amplitude along re-
ceiver line 2 is even smaller than along receiver line 1 for distances
greater than five times the crack thickness.

Advanced model setups

The model setup consisting of an elliptical crack (second model in
Figure 1) is used for simulating a partially filled crack. The crack is
filled with viscous oil and has a small cap at the crack tip filled with
hydrocarbon gas. The gas cap extends from x/h = —31.8 to x/h
= 0. Figure 11 shows the snapshots of the displacement field in the
x-and y-direction after the SGW is reflected at the crack tip. A major
part of the SGW is reflected already at the oil-gas contact line and
only a small-amplitude SGW propagates further along the crack
where it is reflected at the crack tip. This multiple reflection leads to
the complex reflection pattern in Figure 11. One major difference to
the crack filled only with oil (almost identical to the crack filled only
with water, Figure 6) is the amplitude and radiation pattern of the
elastic body waves that are radiated away from the crack tip when
the SGW is reflected. The radiation pattern is much more forward-
directed towards the propagation direction of the incident SGW,
compared to a radiation pattern pointing in every direction for the
fully saturated crack (Figure 6). Also, the amplitudes of the radiated
body waves are much larger. Figure 9 shows the amplitude ratio R
between reflected and incident SGW for both cases. For the crack
fully saturated with oil, R is about 78%. It is reduced to about 43%
when the gas cap is present. The larger amplitudes of the radiated
body waves also mean that less of the energy of the SGW is reflected
compared to the fully saturated crack.

Distributed individual and isolated cracks are only one possible
crack pattern in nature. More common are probably swarms of simi-
larly oriented cracks or two or more families of cracks whose orien-
tations intersect. Figure 12 shows two snapshots at different points in
time of a simulation of two intersecting cracks. The first crack, in
which the SGW is initiated, has an aspect ratio of 333. The second
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Figure 10. Maximum absolute particle displacement along receiver
lines 1 and 2 (Figure 1) recorded during four different simulations.
Three simulations are for an elliptical crack filled with three differ-
ent viscous fluids. The fourth simulation is for a rectangular crack
ending at a flat crack tip filled with viscous water. Maximum abso-
lute particle displacement along receiver line 1 is only shown for the
elliptical crack filled with water (solid gray line) because it is almost
identical for all simulations. All values of one simulation are normal-
ized with the maximum absolute particle displacement at the crack
interface atreceiver line 1.

crack has an aspect ratio of 95. The angle between the two cracks is
60°. The first snapshot (Figure 12a) is taken before the SGW reaches
the intersection point of the two cracks. Two SGW trains propagated
away from the external source in the crack. The left wavetrain is al-
ready reflected at the left crack tip and now both wavetrains are prop-
agating towards the intersection point to the right. Also visible are
the elastic body waves that propagate in the surrounding rock away
from the external source and are scattered by the cracks. The second
snapshot (Figure 12b) is taken after the first SGW train passed the in-
tersection point of the two cracks. Only a part of the SGW continues
propagating straight ahead along the first crack. A part is reflected at
the intersection point and interferes with the second SGW train on
the first crack. A considerable part of the SGW makes a sharp turn
and propagates along the two branches of the second crack. Also,
elastic body waves are radiated away from the intersection point into
the surrounding rock.

DISCUSSION

Models of SGWs propagating along fluid-filled cracks on various
scales are used to explain the occurrence of long-period volcanic
tremor (AKki et al., 1977; Chouet, 1988; Chouet, 1996). The magma
chamber as a whole or fractures around the volcanic conduit can be
considered as the waveguide where an SGW propagates back and
forth, which results in a characteristic frequency. Because the SGW
amplitude decays exponentially away from the crack, the way this
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Figure 11. (a) Snapshots of the x- and (b) y-component of the 2D dis-
placement field of a simulation of an SGW propagating along an el-
liptical crack (second model in Figure 1). The crack is filled with vis-
cous oil and has a small gas cap at the crack tip. Contour lines are the
same as in Figures 6 and 7. Axis labels for the abscissa are only given
in (b) but are valid in (a) also.
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long-period signal is transmitted to recording stations at the earth’s
surface remained unclear. The emission of elastic body waves dis-
cussed in this study makes it possible to detect SGW-related signals
even in distances away from the crack where the amplitude of the
SGW itself is too small to be measured. Which type of body wave
(i.e., P- or S-waves) is more important remains to be determined in a
future study. The orientation of fully saturated cracks (or magma
chambers) might not be determinable from measurements of volca-
nic tremor due to the radiation pattern that points in every direction
from the crack tip, but it might be possible for cracks containing a
gas cap. Depending on the type of magma, viscosities can vary by or-
ders of magnitude, but in general, they are considerably larger than
that of the fluids considered in this study. Depending on the magma
viscosity and the crack thickness, the quality factor of an SGW lies
between 1 and 100. The reflection of an SGW at the tip of a crack can
still be strong. However, an SGW in a thin crack filled with a highly
viscous magma is expected to be attenuated relatively fast and can-
not propagate back and forth along the crack several times. Conse-
quently, no long-period volcanic tremor will be generated. If long-
period volcanic tremors are a result of SGWs falling into resonance,
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Figure 12. (a and b) Snapshots of the 2D displacement field at two
different points in time of a simulation of an SGW propagating along
an elliptical crack that is intersected by a second elliptical crack. The
displayed value is the normalized absolute particle displacement
10°Vu; + u;. The cracks are filled with viscous water. Axis labels for
the abscissa are only given in (b) but are valid in (a) also.

it is more likely to observe them when lower-viscosity magmas are
present in thicker cracks. Still, it is unlikely that a single SGW would
propagate back and forth along the crack many times and produce a
continuous long-period volcanic tremor. For this, a continuous exci-
tation of SGWs would be necessary.

Reservoir rocks for hydrocarbons often contain a large number of
fractures. The network of fractures contributes significantly to the
permeability of a reservoir. Kostek et al. (1998) and Tonov (2007)
demonstrate that fractures can have an important effect in borehole
seismology. Also, SGW-related effects (such as rock-internal reso-
nance) can be important for monitoring hydrofracturing processes
during the exploration of hydrocarbon reservoirs. However, current
models for poroelastic and fractured rocks do not include these ef-
fects. This and future studies will help to include SGW-related ef-
fects into more realistic models for fractured rocks (Korneev et al.,
2009). Frehner et al. (2009) develops a basic model that couples res-
onance effects with seismic wave propagation. This model was ap-
plied to oscillations that can take place on the pore level due to sur-
face-tension effects in partially saturated porous rocks. However,
the resonant behavior of SGWs in fractured rocks is another possible
explanation for the wave propagation-oscillation model presented in
Frehner et al. (2009). Models need to be designed for a whole finite
crack where both crack tips are fully resolved to simulate the propa-
gation of SGW back and forth along the crack and the development
of the corresponding resonance frequency. Korneev (2009) shows
that oscillations in the subsurface can be measured with a seismic ar-
ray. Oscillations are easier to detect in late arrivals when they are not
masked by high-energy body waves. This implies that long-lasting
oscillations are more easily detectable than short-lasting oscilla-
tions. In the case of an SGW, this means that a strong reflection at the
crack tip eventually enables the detection of the resonant character
of the SGW.

All presented simulations use a source inside the crack. Possible
causes of a source inside the crack are, for example, the opening or
propagation of the crack due to magma migration in a volcanic area
(Chouet, 1986) or hydrofracturing of a subsurface reservoir that is
under production. For a source inside the crack, it is clear that an
SGW is initiated. It remains to be determined whether a source out-
side the crack, e.g., a plane P- or S-wave in the elastic surrounding
rock, is capable of initiating an SGW with significant amplitude.
This important next step will help to understand how body waves are
influenced by SGWs in fractured rocks. Because SGWs can generate
resonance in finite cracks, it can be expected that there are frequen-
cy-dependent effects on body waves, e.g., attenuation and disper-
sion. Understanding how strong these effects are is essential for cas-
es where body waves propagate through fluid-saturated fractured
rocks, such as in exploration seismology or site effects analysis of
earthquake data. Especially in exploration seismology, a better un-
derstanding of the resonating SGWs in a fractured reservoir can help
to determine fracture-related petrophysical parameters (such as frac-
ture length, fracture orientation, or fluid viscosity).

The presented numerical models deal with a multiscale wave-
propagation phenomenon with length scales of different orders of
magnitude. Although highly resolved, the numerical setup is still
rather simple, consisting of only one single crack. In this study, one
approach toward more realistic model setups is shown by modeling
two highly resolved intersecting cracks. Another approach is, for ex-
ample, a model of many cracks (Saenger and Shapiro, 2002; Saenger
et al., 2004). The primary investigation target of such models is to
determine effective bulk rock properties. However, the high spatial

Downloaded 24 Mar 2010 to 131.130.100.99. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Stoneley guided-wave reflection & scattering T35

resolution thatis needed for accurately modeling SGWs is lacking in
these models. For further insight into the significance of SGWs in a
realistic fractured rock, both end-member modeling approaches
have to be brought together to have a high-resolution model of a
fractured rock with a large number of cracks. Also, the presented
model needs to be expanded to 3D to cover a larger variety of possi-
ble geometries of the crack. Although the 2D plain-strain model is a
good approximation of a crack with a relatively round crack surface
(i.e., penny-shaped cracks) or a crack with straight edges, a fully 3D
model also could handle strongly elongated cracks (i.e., cigar-
shaped cracks).

For the chosen model parameters, more than 99% of the simulated
crack length is in the thick fracture regime, according to Korneev
(2008). It is shown that the crack geometry (elliptical and straight
with a flat crack tip) significantly influences the reflection behavior
of the SGW. However, the two crack geometries are rather simplis-
tic. More realistic crack geometries can comprise rugose crack sur-
faces, asymmetric crack geometry, or pinching out of the crack tip
(e.g., Barenblatt, 1996). For thinner cracks or for cracks pinching out
at the crack tip, a larger part of the crack would lie in the thin fracture
regime, according to Korneev (2008). In the thin fracture regime,
fluid viscosity plays a more important role and the behavior of the
SGW changes considerably. Studies similar to the one presented for
the thin fracture regime remain to be done in the future. However,
both pinching-out cracks and 3D cracks require a more powerful nu-
merical implementation.

Using the conventional FDM, it is not straightforward to dis-
cretize an elliptical crack with the rectangular numerical grid. Stair-
case-like discretization leads to numerical inaccuracies (Frehner et
al., 2008). A logical choice for the crack geometry in FDM-simula-
tions is a straight crack with a flat crack tip (Chouet, 1986; Kostek et
al., 1998; Groenenboom and Falk, 2000). Conversely, the FEM can
handle both crack geometries with ease because it uses an unstruc-
tured numerical mesh. This difference is critical because the two
crack geometries have a major influence on the reflection of SGWs
and on the amplitude of the radiated elastic body waves. The sharp
edges at the tip of the straight crack scatter SGWs much more than
the smooth elliptical crack tip.

CONCLUSIONS

SGWs propagate along cracks and are partly reflected at the crack
tip. The interference between incident and reflected SGWs leads to a
node (zero amplitude) exactly at the crack tip. A relatively short dis-
tance away from the crack the SGW amplitude is too small to be de-
tected due to the exponential decay away from the crack. This is true
even during the reflection process when the SGW amplitude is in-
creased due to the interference between incident and reflected
SGWs.

The reflection of the SGW at the crack tip depends on the fluid
properties in the crack and the crack geometry. An elliptical crack
having a round tip exhibits a significantly stronger reflection than a
rectangular crack having sharp corners at the tip. Elliptical fractures
filled with gas, oil, or water exhibit strong reflection with an ampli-
tude ratio between the reflected and the incident SGW ranging be-
tween about 75% and almost 100%.

The part of the SGW that is not reflected at the crack tip is emitted
into the surrounding elastic rock in the form of body waves. This
makes the detection of SGW-related signals possible even away
from the crack where the SGW itself cannot be detected. The radia-

tion pattern of these body waves points in every direction from the
crack tip for a fully saturated crack. In the presence of a small gas cap
at the crack tip, the radiation pattern is predominantly directed in the
propagation direction of the incident SGW.

The propagation of SGWs along a crack is a multiscale problem
where the different scales need to be resolved in detail. The FEM is a
suitable numerical method for simulating such problems. The un-
structured numerical mesh allows having a fine resolution where it is
needed without the need of a fine resolution elsewhere in the numeri-
cal domain. Also, the unstructured mesh allows resolving complex
geometries accurately without introducing staircase-like discretiza-
tion. The very fine spatial resolution would lead to a very small ex-
plicit time increment, and therefore to long calculation times. Im-
plicit time integration is a suitable alternative for wave propagation
in fluid-filled finite cracks.
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