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Abstract

In the first part a finite element code for incompressible linear viscous media is used to investigate
the strain-evolution and distribution in single layer and double layer folds embedded in a weaker
matrix. The concept of finite strain ellipses, which is long-established in the geological community
but rarely applied to numerical models, is used to visualize the finite strain in two-dimensions. The
single layer system shows a clear distinction of the deformation mechanism between the layer and
the surrounding matrix. While the stiff layer is dominated by rigid body rotation without much
shape change, the opposite is true for the matrix. Two different types of neutral lines are to be
distinguished, the incremental and the finite neutral line, the incremental neutral line moves earlier
than the finite neutral line from the outer arc to the inner arc of the fold.

The simulation of double layer folds is compared with a multilayer stack bounded by two much
thicker layers. This comparison suggests that a double layer system is not influenced by the
presence or absence of a multilayer stack situated in between. The deformation history between the
two thick layers is tripartite with an initial layer-parallel compression without buckling of the thick
layers, a buckling phase with shear deformation between the layers and a final amplifying phase
with flattening normal to the layers between the fold limbs. During the first phase the multilayer
stack between the two thick layers is folded and the superposed thin layers build vertical stacks of
symmetrical folds. These stacks are almost passively deformed during the second and the third
phase but the folds become asymmetric. The amplitude of such a fold stack at the transition from
the first to the second deformation phase determines, whether it outlasts the flattening of the third
phase or not. Besides the initial perturbation, the number of thin layers effects amplification during
the first deformation phase. A multilayer stack with a high number of layers amplifies faster and
has a higher chance to outlast the flattening phase and to develop asymmetric parasitic folds.

The finite element code and all visualization programs used for this study are self-developed,
which was also the main aim of this diploma thesis.
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Chapter 1

Introduction

The investigation of folded rocks from a theoretical point of view has a very long history and many
authors together published an extensive assemblage of literature on this topic. Early works (e.g.
Biot, 1961) simplified the problem of a single layer fold and tried to find analytical solutions for
different aspects of folded layers, for example the growth rate or the dominant wavelength. Even
though the simplifications were significant, the obtained results already were very insightful and
they remain fundamental knowledge for the present-day studies. Later workers (e.g. Fletcher,
1977) developed more sophisticated and exact models to describe the same aspects of single layer
folds. With increasing knowledge of the processes involved in folding of rocks the theories were
extended to the more general and near-natural case of multilayer folds. Analytical results were
searched and found for this scenario (e.g. Smith and Marshall, 1993). In the upcoming computer
simulations different rheologies, geometries and boundary conditions were implemented and it was
possible to observe the fold development dynamically (e.g. Williams, 1980). In order to
numerically model multilayer folds, many authors use special constraints that allow resolving only
one layer of a multilayer sequence and repeat this layer (e.g. Casey and Butler, 2004). With such
an approach calculation time is strongly reduced. The increasing available computational power
now allows a higher resolution, hence more accuracy in the models. At the same time, more
complex rheologies and more and more interactive processes are involved in such models. The
increase of resolution makes the modeling of real multilayer systems possible where a whole stack
of layers is resolved and no further constraints are necessary (e.g. Schmid and Podladchikov,
2005). The increase in complexity also leads to new insights in geometrically relatively simple
systems such as single layer folds (e.g. Schmalholz et al., 2005).
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Compared to analogue models the numerical models have the big advantage that properties within
the models such as stress or pressure can be quantified at every point and for each and every every
time step. This thesis goes in the line of works which use rheologically and geometrically simple
models with a high enough resolution to model a real multilayer stack. In contrast to models where
only one layer of a multilayer system is considered, this model also allows vertical variations
between the individual layers to occur.

Many numerical models have deficits in the calculation and especially in the visual representation
of the finite strain which accumulates over time. In contrast, the treatment of the incremental strain
causes no big problems. For geologists, however, the finite strain is much more important since it
is observable in the field. A common visualization tool for finite deformation is the concept of the
strain ellipsoid, which is represented with an ellipse in two-dimensions. Field geologists and
analogue modelers use this tool for a long time. Although this concept is well known it is rarely
used in numerical models. Therefore, the calculation of finite strain ellipses is carried out as a first
aim of this thesis. This visualization technique allows the investigation of the finite strain
distribution of single layer and double layer folds as a second aim.

Once double layer systems are analyzed, multilayer stacks can be added to the system as the third
aim of this thesis. This multilayer stack is situated between two thicker layers of a double layer
system which folds with a different dominant wavelength and a different growth rate. The used
rheology is linear viscous for the stiff layers, as well as for the matrix in between. The model has a
free slip lower surface and an open surface at the top and it is horizontally compressed with a
constant strain rate. With this relatively simple model asymmetric parasitic folds with a different
wavelength than the thicker layers are produced, which makes the model fully multi scale. The
conclusions from the double layer fold systems can be used to determine under which conditions
parasitic folds develop.

Development and programming of the finite element code and all the visualization routines in
MATLAB® are done by myself. The visualization is kept apart from the finite element code and
both are written as general as possible for future use. This is important especially for the
visualization routine, since it may be used by other researchers or for different projects.
Development of the own finite element code and understanding of the mechanical equations
behind was the main aim of this diploma thesis.
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Methods

2.1. Introduction

This chapter summarizes the basic principles and methods used to write the two dimensional finite
element code. A much more detailed description is given in the appendices A, B and C. Since a
standard finite element method is used, many of the techniques used here are also described in
different text books and papers (e.g. Thomasset, 1981, Zienkiewicz and Taylor, 1994 or Hughes et
al., 1979). The computer code itself is written in MATLAB® Version 6.5 by The MathWorks Inc.
and was run on personal computers. No special computer setup or super computers were used.
Visualization was also done with MATLAB® graphic tools.

2.2. Finite element formulation of the mechanical equations
The two-dimensional displacement field of an incompressible linear viscous fluid can be

calculated by combining the following four sets of equations. Note that compressive stresses are
defined as negative and that gravity is ignored in the first equation.

1) Force balance: B'G =0 (1)
2) Conservation of mass: Vi =0 (2)
3) Rheological relation G = —pm + D& 3)
4) Kinematic equation ¢ = BY 4)

where V is the Nabla operator, v the velocity vector and p the pressure. & and ¢ are vectors
containing the total stress and total strain rate values, respectively. The vector ¢’ contains the
deviatoric strain rates.



CHAPTER 2 METHODS

The first and second entry are the normal components in x- and y-directions, while the third entry
is the shear component. The third entry in the strain rate vector is defined as y,=2€ . The

matrices Band D and the vector 7 are defined as follows.

alox 0 20 0 0
B=| 0 ooyl , D=|0o 240 , m=jl (5)

where u is the viscosity. With the definition of deviatoric strain rates, equation (3) can be
reformulated. Thereby formulation of equation (3) does not change, only the definition of matrix
D has to be adjusted to D.

fu =lu 0
D = _2/3u 4/311 0 (6)
0 0 u

Combination of equations (1) to (4) leads to the governing equations that describe the
incompressible Newtonian flow with a mixed formulation.

B'DBY — Vp =0 (7)
Vi =0 )

Note that equation (7) is a set of two equations making equations (7) and (2) together a set of three
equations for the three unknowns v,, v, and p. Incompressibility implied in equation (2) holds
major problems for solving the system and especially for generating an accurate pressure field.
These problems are well summarized in Pelletier et al., 1989. Therefore, a compressible
formulation has to be chosen while the Uzawa iteration will approximate the incompressibility.
The more general compressible formulation of equations (2) is:

0 T
e - -K (V'9) (8)

where K is the incompressibility.

The formulation of equation (8) is often referred to as the penalty approach with the penalty
parameter K (see e.g. Hughes, 2000, Chapter 4). This penalty parameter essentially is the elastic
incompressibility parameter, which is to be chosen a big number for an incompressible
formulation.
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With the compressible formulation and the penalty approach the resulting governing equations are:

B'DBY — Vp =0 (9)
5]7 _ T -
5 = KV (10)

Before the spatial derivatives are considered, the time derivative in equation (10) is discretized
with a finite difference approach.

pnew + KAt(VTi;) — pold (11)

where At is a small time increment, and p*?

and p"" is the pressure before and after the time
increment. Discretization of equations (9) and (11) is carried out with a finite element method by
approximating the velocity and the pressure within an element with their corresponding shape
functions &, and N,, respectively. Integration over the whole element is performed after the
Galerkin weighting functions (same functions as the shape functions) are applied to the equations.
Integrating by parts reduces the system to a set of equations containing only first order derivatives
which is often referred to as the weak formulation. This system has the following popular form

(see e.g. Hughes, 2000, Equation 4.3.21 or Zienkiewicz and Taylor, 1994, Equation 12.18)

¥ 0
?ﬁ} = |MI7,;,} (12)

In this mixed formulation, G is the discrete gradient operator and G” is the discrete divergence

KM G
—KAtGT M

operator. ¥ is the velocity vector containing all velocity components of all nodes of the element.
The following definitions apply in equation (12).

KM = ff éTDdedy , G = —ﬂB;T N,dxdy = M = HN,T,diXdy (13)

where B and lfG are suitable organized matrices containing the spatial derivatives of the
velocity shape functions.

The three equations (12) can be collapsed into two equations eliminating one degree of freedom,

new

7 out of the system.

KLY = — G p™ (14)

—_—

The lost degree of freedom, p"" will be calculated later in the Uzawa iteration loop.
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old

must be predefined before solving the equation while the new matrix KL is defined as

KL = KM + KAtGM™'G" (15)

2.3. The use of the Uzawa iteration algorithm

Equations (9) and (11) are compressible formulations. To achieve incompressibility Pelletier et al.,
1989 recommend the Uzawa iteration algorithm below as one of the best possibilities.

1) Choose p°“ as an arbitrary initial pressure. Very convenient is a zero value.

2) Let n be the iteration number. Derive vV with equation (14) for n>1.
e ol

3) Calculate p"" with equation (12) and use itas p°“ in the next iteration step.

4) Repeat step 2) and 3) until the divergence of the velocity field
(equation (2)) is small enough (smaller than a certain exit criteria).

Besides the velocity field, the pressure field is a result of the Uzawa iteration. This pressure field
was eliminated out of the governing equation before and is now regained. The penalty parameter K
in equation (8) has to be chosen wisely in order to optimize the Uzawa algorithm. Though a high
number reduces the iteration steps for the divergence to reach the exit criteria, it also reduces the
accuracy of the matrix division necessary to solve equation (14).

2.4. Numerical integration on the Q9/3 element

In this study the so called Q9/3 elements are used, which are quadrilateral and built up of nine
nodes for the velocity degrees of freedom, three for the pressure degrees of freedom and nine
integration points. The corresponding shape functions for the velocity are bi-quadratic and
continuous over the element boundaries. Shape functions for the pressure are bi-linear and
discontinuous. This type of element is iso-parametric and is generally considered as one of the best
elements for fluid flow problems (e.g. Hughes, 2000). The choice of discontinuous pressure shape
functions allows calculating accurate pressure fields although the pressure is eliminated out of the
equation system, which is actually solved. The numerical integration on this element is carried out
using the Gauss-Legendre quadrature with its fundamental formula

11 nx ny nip

[ [ rEndgan = 23 fg,n)ww, = 2 f(E,.n,)w, (16)

-1-1 i=1 j=1 n=1

where f(&,#) is an arbitrary function in the local coordinate system (£, #), nip = nx - ny is the total
number of integration points within one element and w, = w; - w; is the weight of the n-th
integration point.
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In order to apply this formula, equations (13) have to be transformed from global to local
coordinates using the determinant of the Jacobian.

Before doing this, the shape function derivatives which, for practical reasons, are defined in local
coordinates have to be transformed to global coordinates using the Jacobian matrix. This needs to
be done because equation (13) is given in terms of global coordinates. These coordinate-mapping
steps, as well as the summation over all integration points in equation (16), is performed for every
element within a loop over the integration points.

2.5. Normalization and boundary conditions

To avoid ill-conditioned matrices in the finite element code, all physical parameters are normalized
using the characteristic value of one for the three fundamental quantities distance, time and
viscosity, respectively. This normalization leads to a dimensionless formulation. To get physical
values, the normalization has to be removed. It is described in further detail in Appendix D.

The boundary conditions used for the experiments on single layer, double layer and multilayer
systems are given in table 1. Using these boundary conditions, it is possible to model only one half
of a wavelength and mirror it to get a full wavelength (figure 1). Further conditions like the time
increment, the initial perturbation of the layers or the resolution is given in the corresponding
chapters.

Boundary = Boundary condition | Values specified at the boundary

Top Free surface Nothing

Bottom Free slip v =10

Left Free slip ve=10

Right Constant strain rate | v, =x- € _, whereas €, =1

Table 1: Boundary conditions used in the experiments on single layer, double layer and multilayer systems.

Fig. 1: The modeled area of a fold is
restricted to a half wavelength and the
matrix above and below this half
wavelength.
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2.6. Benchmarks

Before using the finite element code to model folds, it was tested with two different types of
benchmarks. The general idea of these benchmarks is to approximate an analytical solution with
the computer code and to see whether the numerical solution converges towards the analytical with
increasing resolution. In both tests the exit criteria for the velocity divergence in the Uzawa
algorithm is set to 10"* and the time increment to 10°.

2.6.1. Single layer fold growth rate

Fletcher, 1977 provides the following exact solution for the growth rate g of a single layer fold
with higher viscosity than the surrounding media. The rheology used in his paper is linear viscous
for all materials and therefore is the same as that in this study.

~2(1-R)

(1-R) — ﬁ((l-ﬁ-R)zek . (I_R)Qe—k) (17)

Qanalyn’c ( k h R) =

where & = 2zH/L is the wave number with H as the layer thickness, L as the wavelength and
R={manix / Liayer as the viscosity contrast between the surrounding matrix and the layer.

The growth rate defines how fast a fold amplifies according to the amplification law (Biot, 1961):
Ar) = A ") (18)

The analytical fold growth rate Guuupica is €valuated for a wavelength to thickness ratio “/ of 16.5
and a viscosity contrast R of 102 For the same values, three time steps are performed with the
finite element code. The initial amplitude to thickness ratio of the layer“/y is set to 10*. The fold
growth rate is calculated according to:

4,

4,

-1

qnumeric - dt loglo - 1 (19)

where dt is the time increment and 4; and 4, are the amplitudes after 3 and 2 time steps.

In figure 2 the error between the analytical and the numerical fold growth rate clearly decreases
with increasing resolution in the finite element code. Figure 3 shows the converging numerical
results for the fold growth rate with increasing resolution.
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Fig. 2: Double logarithmic plot of the error of Fig. 3: Zoom to the growth rate vs. wavelength
curve (inlay) at a wavelength to thickness ratio
of 16.5. The blue dots (numerically calculated

growth rate) converge towards the analytical

the numerical fold growth rate with respect to
the analytical solution by Fletcher, 1977 vs. the

total number of nodes used in the finite element
growth rate (red line) with increasing resolution

code. The numerical solution clearly converges
of the finite element code.

towards the analytical solution with increasing
resolution. Geometrical and numerical details
are described in the text.

2.6.2. Pressure field around a rigid inclusion
Schmid, 2005 provides a fully two dimensional analytical solution for the pressure p at any point
around a rigid inclusion surrounded by a linear viscous media compressed in pure shear

conditions.

gl(zme—Zid) _ 2621'(1))
(1-m*)(3m&*~1)

p = —4uéR (20)

where u is the viscosity of the matrix around the inclusion and € the far-field pure shear strain
rate. ‘R denotes the real part of the expression in brackets. ¢ is the complex coordinate in the
image plane which is mapped to the physical plane. The variable m for a perfectly circular
inclusion is equal to zero and ¢ defines the inclination of the inclusion with respect to the far-field
flow which is indistinguishable for the case of a circular object. For further details see Schmid,
2005.

In the finite element program the pressure is one of the outputs of the Uzawa iteration loop
described in chapter 2.3. This numerically calculated pressure field is compared with the analytical
solution at every integration point after one time step. The far-field pure shear strain rate € is
equal to 0.5 and the viscosity in the surrounding matrix is 100 (dimensionless).
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In figure 4 the error averaged over the whole numerical domain is plotted versus the resolution of
the finite element code. It is obvious that the error decreases with increasing resolution. Figure 5
shows the difference between the numerical and the analytical pressure field calculated with the
highest resolution of figure 4 which is 50904 nodes, whereas some of them lie outside the plotted

domain.

Error in per cent

10 10" 10
Total number of nodes

Fig. 4: Double logarithmic plot of the averaged
error of the numerical pressure field with respect
to the analytical solution by Schmid, 2005 vs. the
total number of nodes used in the finite element
code. The numerical solution clearly converges
towards the analytical solution with increasing
resolution. The spatial distribution of the error
at the highest resolution is presented in figure 5.

2 -0.03
-0.04
-0.05

Fig. 5: Spatial distribution of the error of the
numerical pressure field with respect to the
analytical around a perfectly circular rigid
inclusion. In the directions of the far-field strain
axes and at the very boundary of the inclusion
the error reaches the highest values. 50904
nodes are used for the numerical solution.

Both benchmarks, fold growth rate and pressure field around a rigid inclusion, clearly show a
convergence of the numerical towards the analytical solution with increasing resolution of the

numerical simulation. In both cases this converging trend is continuous. This demonstrates the

accuracy of the finite element code used in this study.
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Chapter 3

Finite strain-evolution and visualization
in single and double layer systems

3.1. Introduction

In nearly all papers or text books on structural geology the two-dimensional finite strain in rocks is
described by an ellipse (e.g. Ramsay and Huber, 1989). It is assumed that before the deformation,
this ellipse was a circle that deformed passively. Although this concept is long-established, most
authors still draw strain ellipses by hand and do not calculate them. This chapter now presents a
new visualization technique that calculates the finite strain ellipse at any point in the material.

3.2. Exact finite strain ellipse

For every time step the incremental velocity gradient tensor can be calculated at any integration
point according to

v, % 2
|integralion point =B velgrad v (2 1)
Ox
J

where Bve,gmd is a suitable organized matrix containing the spatial derivatives of the velocity

shape functions at the integration point.

11
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Assuming homogeneous strain around the integration point the velocity gradient tensor can be
used to calculate the coordinates of an arbitrary point P after the deformation increment (x'y’),
knowing the coordinates before the deformation (x,y). The interlinking tensor is called the
incremental deformation gradient tensor DG.

b - a2l - el
y'P_ 0x, yP_ ! ox; |\ »y]e (22)

DG, DG,
where u, and u, are the incremental displacement components in x- and y-direction, respectively

1 1

and J; is the Kronecker delta. After a second deformation increment the coordinates of the same
point P are

x"' x' X
= DG, . = DG,DG, 23
[y”}[) 2|y ]p 2 I{y}‘o ( )

This way the coordinates of the point P after any number of deformation increments can be
directly calculated, provided that initial coordinates are known. The multiplication of all
incremental deformation gradient tensors leads to the finite deformation gradient tensor DGy. Point
P may be an arbitrary point on a circle around the integration point. Assuming homogeneous
deformation around the integration point during all deformation steps, the coordinates of this
passively deformed circle can also be calculated directly. This process is illustrated in figure6.

step by step
g DGII g ( } i DGzZ i [x } — DGz.? DGm g x
y »"
' . ,
direct
DGy — [x}
y

Fig. 6: a) Progressive deformation of a strain ellipse which initially was a circle. To calculate the
coordinates of the ellipse after any deformation increment equation (22) is applied to the coordinates of the
ellipse before the increment. b) Direct calculation of the coordinates of the finite strain ellipse using
equation (23). The finite deformation gradient tensor DGy has to be calculated stepwise beforehand.

12
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The finite deformation gradient tensor is calculated for every integration point within the
numerical domain and is updated during every time step. It can be averaged over an area or
interpolated to every point, like every other quantity. Therefore the finite strain ellipses can be
drawn everywhere and in every size using a size factor. However, in general, a strain ellipse with a
finite size always overlaps an area which has been heterogeneously deformed and it only
represents the stepwise homogeneous strain at its very center. Making the finite strain ellipse
bigger only means making it visible.

3.3. Coloring of the finite strain ellipse

In natural deformation processes, it is possible that a circle is compressed before being extended in
the same direction. The resulting finite strain ellipse is again a circle and the experienced
deformation is invisible. The same happens if deformation consists of rotation only. Two
possibilities are presented here to avoid this problem and to distinguish between undeformed
circles and deformed circular finite strain ellipses.

The incremental displacement gradient tensor can be split into two parts, the incremental strain
tensor ¢ and the incremental rotation tensor ®.

ou, _ 1(%+5%) N 1(%_%)

ox, 2\0x; E (24)

€ w

The incremental strain tensor ¢ is symmetric and the incremental rotation tensor @ antisymmetric.
These two tensors can be used to define two scalar quantities:

incremental von Mises equivalent strain: € = %(eiﬁei}&%;) (25)

incremental rotation angle: o = arctan(w,,) (26)

The sense of rotation is defined positive counterclockwise. Therefore w,. is used in equation (26)
instead of w,,. The von Mises equivalent strain is a measure for the change of shape and is always
positive. Both quantities are scalar and can be summed up over all deformation steps, leading to a
value for the shape change history and the total rotation angle, respectively. The summation of the
absolute values of the incremental rotation angle leads to a value for the rotation history. The
described values can be used to color the finite strain ellipses.

13
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3.4. Finite strain in single layer folds

The geometrical and numerical setup for the experiments described in this section are summarized
in table 2. Normalization rules are given in chapter 2.5.

Setup for experiments on single layer folds

Viscosity of the layer w=100
Viscosity of the matrix m =1
Initial layer thickness Hy=5
Type of initial perturbation Half cosine. Same perturbation for upper and lower interface of layer
Amplitude of initial perturbation ﬂ - L

P p H, 100
Initial thickness of matrix above

]_[m() = ]5
and below layer
Width of domain L. = 40 (half wavelength for a viscosity contrast of 100)
Time increment At =107
Horizontal resolution 301 nodes
Total resolution
Vertical resolution over layer 31 nodes Total vertical
27391 nodes

Vertical resolution over matrix 31 nodes 91 nodes

Table 2: Fundamental definitions for the experiments on single layer folds.

3.4.1. Finite strain-evolution during progressive folding

With the new visualization technique one may readily observe the strain-evolution in a fold
(figures 7a-h). The color of the finite strain ellipses depends on the accumulated von Mises
equivalent strain 2., in the upper pictures and the finite rotation angle Xa in the lower ones,
respectively. The reference colors are given in the two color-bars on every page. Note that only
one half of the pictures is calculated and then mirrored to get a better view of the situation.
Therefore the finite rotation angles on the left-hand side of the pictures 7b, d, f and h have the
wrong sense of rotation. After 10% shortening (figures 7a and b) almost no buckling occurred.
Only a very slight undulation of the layer is visible. The strain ellipses show a vertical major strain
axis over the whole domain due to the far-field shortening. No visible difference between
individual strain ellipses, neither in shape nor in color, expresses homogeneous strain.The layer
and the matrix are indistinguishable in terms of strain and rotation. After 25% shortening (figures
7¢ and d) the buckling process started. The fold limbs are rotated and so is the near-layer matrix,
but with opposite sense. While rotation in the fold limbs is due to rigid body rotation (greenish
color in figure 7d), rotation in the matrix is due to shearing (red to orange color in figure 7d). This
tendency is even stronger after 40% shortening (figures 7e and f).
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

While rigid body rotation is dominant in the stiff layer, strain is dominant in the matrix (darker
blue colors in the stiff layer, yellow to green in the matrix in figure 7¢). Besides the region near the
outer arc of the fold, the matrix is more distorted than the layer and therefore has more elongated
strain ellipses. Near the outer arc, the push of the growing fold and the overall compression are
opposed, though far-field compression is stronger (vertical major strain axes). Near the inner arc,
the pull of the growing fold and far-field compression work together and the ellipses are more
elongated. At 50% shortening (figures 7g and h) fold limbs are not much distorted but strongly
rotated. The opposite takes place in the matrix near the fold limbs. The strain ellipses are heavily
distorted (dark red in figure 7g) but rotated only by a few degrees. The strong rotation of these
ellipses is almost entirely due to high shear stain. Generally, the accumulated strain from the first
10% of shortening does not change much during further deformation. In the matrix it is the rigid
body rotation that little changes.

To get a better understanding of the evolution of the finite strain in figure 7 it is also possible to
pick single vertical beams out of the simulation. This is done in figure 8 with two vertical beams
within the stiff layer, one in the hinge zone and one on the fold limb. The beams are chosen in a
way that their subdivisions are quadratic at the initial stage. While the beam at the hinge does not
rotate, the one on the fold limb obviously rotates with increasing shortening. The accumulated
strain shows a different pattern. In the limb, the beam rotates with increasing shortening but finite
strain is about the same over the whole beam. In the first 25% of shortening the accumulated strain
changes much more than from 25% to 50%. On the contrary the accumulated strain in the hinge-
beam varies strongly from top to bottom. There the bending of the layer influences the strain
distribution.

Fig. 7 (pages 16 to 19): Growing single layer fold with a viscosity contrast of 100 at different stages of far-
field shortening. Strain ellipses in the upper pictures are colored with von Mises equivalent strain. The
corresponding color-bars are given on every page. The ones at the bottom are colored with finite rotation
angle. a) and b) 10% shortening, c¢) and d) 25% shortening, e) and f) 40% shortening, g and h) 50%
shortening. For more information see text.
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Fig. 8: Strain-evolution of a single vertical beam in the hinge zone and on the fold limb, respectively. The
beams are indicated in the lower most big scale figures. The strain ellipses in the upper most figures are
colored with the accumulated von Mises strain, while the ellipses in the figures in the middle are colored
with the finite rotation angle.

3.4.2. Finite and incremental strain distribution, the neutral line

Many authors working on folds (e.g. Ramsay and Huber, 1989) propose the existence of a neutral
line along which there is zero strain between domains of layer-parallel shortening and layer-
parallel extension in the stiff layer. Figure 9 shows that a strict difference has to be made between
the finite neutral line and the incremental neutral line. The initial layer-parallel shortening in the
hinge region leads to strongly elongated ellipses before buckling starts (figure 8 at 10%). As soon
as the fold begins growing, bending of the hinge leads to incremental extension in the outer arc and
to incremental compression in the inner arc. In the inner arc this additional compression intensifies
the far-field compression and the ellipses become even more elongated. In the outer arc, however,
bending-related extension weakens the far-field compression and the finite strain ellipses return to
circular or even to horizontally elongated shapes. The transition from horizontally to vertically
elongated ellipses is referred to as the finite neutral line, whereas the transition from bending-
related, incremental, layer-parallel extension to compression is referred to as the incremental
neutral line.
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Fig. 9: Fold shapes of a single layer fold with a viscosity contrast of 100 at different stages of shortening.
The finite strain ellipses are drawn over the whole domain even though they are hardly recognizable in the
matrix at higher stages. The incremental neutral line is drawn in red as the zero-contour of the layer-
parallel strain rate. The finite neutral line has to be imagined between layer-parallel elongated finite strain
ellipses and the ones elongated normal to the layer. A more detailed view of the hinge region is given in

figure 10.
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Since the finite rotation angle is known at every integration point according to equation 26) the
strain rate tensor in the (X,y)-coordinate system can be transformed into a (x',y')-coordinate system
with x parallel and y orthogonal to the layer. The incremental neutral line in figure 9 (red line) is
then calculated as the zero-contour of this layer-parallel strain rate. The finite strain ellipses are
drawn to visualize the position of the finite neutral line. Figure 10 shows a detailed view of the
hinge region with a single beam, but with ten strain ellipses instead of four. The beam is indicated
in red in the lower pictures. At each deformation stage the finite strain ellipses are shown in the
left beam, the incremental strain ellipses in the right beam. Since the shape of the beam is the
result of the finite deformation, the incremental strain ellipses do not fit into the subdivisions of
the beam. The incremental neutral line is indicated in red as in figure 9. The finite neutral line in
blue is placed between the strain ellipses by hand.

Both neutral lines move through the fold from outer to inner arc. The initial layer-parallel
shortening elongates the finite strain ellipses vertically. Because in the outer arc this shape first has
to go back to circular, the finite neutral line moves much later than the incremental neutral line
through the fold. This indicates that layer-parallel shortening, during the early history of
deformation, has a high influence on the distribution of the finite strain.

In figure 9 the zero-contour of the layer-parallel strain rate and the finite strain ellipses are drawn
both in the layer and in the matrix. The discussion above only considers the situation within the
stiff layer. Since the strain ellipses in the matrix are hardly recognizable for higher stages of
shortening, they are not considered extensively. The same applies for the zero-contour drawn in
the matrix, since it makes no sense to speak of a layer-parallel strain rate in this matrix.

|

inital 10% 25% 40% 50% 60% 70%

——=~NN NN

Fig. 10: Finite (left beams) and incremental strain ellipses at the fold hinge at different stages of shortening

EEEEEEEEEE

for a single layer fold with a viscosity contrast of 100. The incremental neutral line (red) moves much earlier
through the fold than the finite neutral line (blue).
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During this study the investigation of single layer folds also involved experiments on exactly the
same geometries as described above but with different viscosity contrasts. The results of these
experiments are presented in appendix E. The conclusion is that with decreasing viscosity contrast
both the incremental and the finite neutral line move later and slower through the fold,
respectively. This means that the layer-parallel shortening during early deformation has a higher
influence on the distribution of finite strain if the viscosity contrast is low. In other words, layers
with a low viscosity contrast amplify slower and later and the ratio of layer-parallel shortening to
amplification is higher. In addition, the difference in both the accumulated von Mises equivalent
strain and the finite rotation angle between the layer and the matrix decreases with decreasing
viscosity contrast. The fold limbs rotate less but deform more and therefore become more and
more similar to the matrix. This is straightforward since there is no difference between layer and
matrix for a viscosity contrast of one.

3.5. Finite strain in double layer folds

The multilayer systems simulated in chapter 4 are always situated between two much thicker
layers but with the same viscosity as the stiff layers (¢ = 100) of the multilayer system. Therefore,
the strain distribution and deformation history of a simple double layer system is investigated prior
to the real multilayer system. These simulations pay special attention to the matrix between the
two stiff layers. The geometrical and numerical setup used is given in table 3.

Setup for experiments on double layer folds

Viscosity of both layers w=100
Viscosity of the matrix n =1
Initial layer thickness of both stiff layers Hy=5

Hal ine. S turbation fc
Type of initial perturbation for both stiff layers afcosme. ame perturbation for upper
and lower interface of both layers.

A 1
Amplitude of initial perturbation —Y = _—_ forbothlayers
H, 100
Initial thickness of matrix above
l—[auter/) = ]5
and below layer
Initial thickness of matrix between layers Hiero = 5 (equal to thickness of thick layers)
Width of domain L.= 4Q (halfwavelengthfor a single layer
for a viscosity contrast of 100)
Time increment At =107
Horizontal resolution 301 nodes
Total resolution
Vertical resolution over layers 31 nodes Total vertical
45451 nodes
Vertical resolution over matrix 31 nodes 151 nodes

Table 3: Fundamental definitions for the experiments on double layer folds.
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3.5.1. Three phases of progressive deformation

For a first investigation concerning double layer systems, the matrix thickness between the two
stiff layers is chosen equal to the layer thickness. The geometries at different stages in the folding
history of such a system are shown in figure 11 together with the finite strain ellipses colored with
the accumulated von Mises equivalent strain (upper pictures) and the finite rotation angle,
respectively. As in figure 7, only the right half of each picture is calculated and then mirrored to
have a whole wavelength to study. Therefore, the finite rotation angles in the left halves of the
lower pictures indicate the wrong sense of rotation. The two color-bars on every page give the
color scheme for each picture.

After 10% shortening (figure 11a and b) only a very slight bending of the two layers is noticeable.
Buckling is not initiated and no difference between the matrix between the layers, the matrix
surrounding it and the layers themselves is visible in terms of finite rotation angle and accumulated
strain. The situation is roughly the same as in figures 7a and b. The orientations of the finite strain
axes is vertical and constant over the whole domain.

After 20% shortening (figures 11c and d) the buckling process is initiated and the fold limbs of the
two stiff layers start to rotate (light blue in figure 11d) and the finite strain ellipses in the matrix
between the two stiff layers start to rotate in the opposite direction. In terms of accumulated strain
there is still no big difference between the stiff layers and the matrix in between. But note that the
color scheme extends to much higher values for both the accumulated strain and the finite rotation
angle than in figure 7. Therefore the differences are more difficult to distinguish. In addition, the
orientations of the finite strain ellipses in the surrounding matrix near the outer arc of the fold is
different for the anticline and the syncline. This is due to different conditions at the upper and
lower boundaries. While the upper boundary is a free surface the lower has a free slip condition
which essentially means that it has a zero vertical velocity. The matrix above the anticline is
pushed upwards from the growing fold and can move away because the boundary is deformable.
The matrix below the syncline is pushed downwards but is blocked by the lower boundary.
Therefore the matrix experiences a strong vertical compression and the finite strain ellipses rotate
to be horizontally elongated. If the matrix surrounding the fold was the main subject of this chapter
the boundaries would have to be much further away from the fold. But since the attention lays on
the matrix between the two stiff layers this phenomenon is ignored.
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At 30% shortening (figures 11e and f) the phenomena described above are more developed and the
matrix between the layers clearly differs from the layers. The accumulated strain reaches much
higher values than in the surrounding matrix and the absolute value of the finite rotation angle
already reaches about the same values as in the fold limbs of the stiff layers, although the sense of
rotation is different (orange color in the matrix, blue in the layers in figure 11f). Both the
accumulated von Mises strain and the finite rotation due to rigid body rotation do not reach the
highest values in the middle of the matrix at the inflexion point as one could expect, but between
the inflexion point and the fold hinge right at the boundary to the convex curved stiff layer. The
thickness of the matrix between the two stiff layers changes from hinge to inflexion point.
Measured orthogonal to the layer boundary, the hinge becomes thicker and the limbs thinner. At
the same time, the two stiff layers tend to form parallel folds (the orthogonal layer thickness is
constant over the whole wavelength).

After 40% shortening (figures 11g and h) the highest values of the accumulated von Mises
equivalent strain and the finite rotation angle are reached for this deformation sequence and all the
phenomena described above are fully developed and clearly visible. It is now obvious that the stiff
layer at the inner arc is bent more than at the outer arc. The matrix between the two layers is
strongly rotated (red colors in figure 11h) and deformed (red colors in figure 11g). The existence
of a strong rotation and a strong shape-change at the same time indicates that the main part of the
deformation is a layer-parallel shear deformation. This deformation type contains both properties.
A second part of the deformation is the flattening of the matrix normal to the layer surfaces which
squeezes the matrix from the limbs towards the hinges.

Fig. 11 (pages 26 to 29): Growing double layer fold with a viscosity contrast of 100 at different stages of
far-field shortening. Strain ellipses in the upper pictures are colored with von Mises equivalent strain. The
ones at the bottom are colored with finite rotation angle. The corresponding color-bars are given on every
page. a) and b) 10% shortening, c¢) and d) 20% shortening, e) and f) 30% shortening, g) and h) 40%
shortening. For more information see text.
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The deformation history of the matrix between the two stiff layers near the inflexion point can be
summarized in three phases:

1) The neighboring stiff layers have not started to buckle and the dominant deformation in the
whole system is a layer-parallel compression. The matrix in the middle is nearly
indistinguishable from the layers in terms of accumulated strain and finite rotation.

2) The stiff layers start to buckle and a layer-parallel shear deformation is active in the matrix in-
between. This leads to a strong shape-change and rigid body rotation, stronger than in the stiff
layers or in the surrounding matrix.

3) Strong buckling and closure of the two folded stiff layers leads to a compression normal to the
layer surfaces. The matrix is squeezed out of the limb region towards the hinge.

The three phases are not strictly separated. Layer-parallel shear, for instance, is still prominent in
phase 3. However, these three deformation phases in the matrix between two stiff layers have a
major impact on the development of multilayered parasitic folds described in chapter 4.

Further insights into the deformation history of a double layer fold system are provided in figure
12. Nine originally vertical beams are passively deformed with the growing folds and plotted with
the corresponding finite strain ellipses. The beams are initiated in a way that their subdivisions are
quadratic at the initial stage. In the sequence of figure 12 the three deformation phases described
above are clearly observable. After 10% shortening (figure 12b) the matrix between the two layers
is almost only compressed horizontally and hardly any shear deformation occurred. After 25%
(figure 12c) shearing is stronger near the convex interface and strongest between the inflexion
point and the hinge. This is clear in the middle beam of the matrix which deforms asymmetrically
with a very strong deformation near the convex interface and a weaker deformation near the
concave interface. The beam at the inflexion point of the matrix, however, deforms symmetrically.
The shearing of the beam as a whole is about the same as in the middle beam but it is more
uniformly distributed and contains no such maxima as in the middle beam. This effect is even
stronger after 40% and 50% shortening (figures 12d and e). The middle beam develops a tail-shape
with a very strong deformed tail at the convex interface. This tail extends between the two stiff
layers into the zone influenced by the compression normal to the layers, which developed late in
the deformation sequence because of the strong amplification of the stiff layers. Therefore, the tail
of the middle beam is not only sheared but also compressed, which intensifies the strongly
elongated shape of the finite strain ellipses. The same shearing-flattening-combination takes place
in the center of the beam at the inflexion point, while the two ends lie outside this zone of very
strong deformation. As a consequence the beam at the inflexion point develops a S-shape. Both the
tail-shape of the middle beam and the S-shape of the beam at the inflexion point are also
recognizable from the arrangement of the finite strain ellipses in figure 11.
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Fig. 12: Finite strain-evolution in a double layer fold with a viscosity contrast of 100 and a layer spacing
equal to the layer thickness. Illustrated are nine beams, six in the stiff layers and three in the matrix in
between. The arrangement of the nine beams is the same as in the big scale figures on the left side of each
deformation stage.
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3.5.2. Three regions of deformation in the matrix between the stiff layers

In chapter 3.5.1. it is foreshadowed that the three phases of progressive deformation do not apply
in the whole matrix between the two stiff layers and that this matrix has to be divided into different
regions. These different regions undergo different paths of progressive deformation. The three
described phases of chapter 3.5.1. apply only in the region near the inflexion point.

The three deformation regions are:

1) Near the inflexion point. This region is characterized by the three phases of progressive
deformation described in chapter 3.5.1. Layer-parallel shortening is followed by shearing and
some flattening normal to the layer.

2) Near the fold hinge of the matrix. This region is characterized by layer-parallel compression
during the whole deformation history, which can be approximated with a pure shear regime.

3) A transition zone between regions 1 and 2. The two different deformation paths of regions 1
and 2 overlap and a complicated deformation mechanism characterizes this region. Shearing
and flattening are less distinct compared to region 1 but strong enough so that a pure shear
approximation is inappropriate.

These three regions are difficult to distinguish but nevertheless this is tried in figures 13 to 15. In
figure 13 the layer-parallel strain rate between the two stiff layers is shown for the same
deformation stages as in figure 11. Negative values (blue) indicate layer-parallel compression
while positive values (green to red) indicate layer-parallel extension. Where possible, the transition
from these two regimes are pointed out with a black line where the layer-parallel strain rate is
equal to zero. This zero contour is referred to as the incremental neutral line in the matrix. The
same observations as in figure 11 can be made in figure 13. After 10% shortening only layer-
parallel compression takes place. After 20%, 30% and 40% shortening, flattening normal to the
layer increases. It is clear from figure 13 that the matrix between the two layers needs to be
divided in terms of deformation history. The region 2, near the hinge, never experiences layer-
parallel extension while the region 1, near the inflexion point, is firstly compressed and later
extended. Together with a diffuse transition zone, region 3, this supports the idea of a tripartition
of the matrix.
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a) 10% shortening c) 30% shortening

b) 20% shortening 40% shortening

2 15 1 05 0 05 1 15 2 25 3

Color-bar for layer-parallel strain rate

Fig. 13: Layer-parallel strain rate in the matrix between two stiff layers of viscosity contrast of 100. The
color-bar at the bottom of the figure applies to all pictures. The initial distance between the two layers is

equal to the layer thickness. The incremental neutral line in black is defined as the transition between layer-
parallel compression and extension.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

In contrast to figure 13 the strain can also be looked at as an accumulated finite quantity. This is
done in figure 14. As a measure for the finite strain the distance between every point of both
interfaces bounding the matrix is calculated and compared with the initial distance between the
two layers. The area where this distance is shortened is colored in red, which means that a finite
flattening normal to the layer takes place. In figure 14 only the 30% and the 40% shortening stages
are shown because this red area does not develop earlier. It is clear that the area of finite flattening
broadens with increasing shortening. The boundaries of this red area are referred to as the finite
neutral line.

a) 30% shortening b) 40% shortening

45 50

40 45

35 40

30 357

251

30

20’ 25.

Fig. 14: Area in the matrix of finite flattening between the two layers. In the red area the distance between
the two layers is shorter than in the undeformed stage. This area develops shortly before 30% background
shortening and gets broader with increasing shortening.

The areas of incremental flattening (figure 13) and finite flattening (figure 14) are compared in
figure 15a. The area of incremental flattening is defined as the area bounded by the two thick
layers and the two zero contours of the layer-parallel strain rate. While the whole area of the
matrix between the two stiff layers is equal to 100%, the blue dots give the percentage of the area
of incremental flattening and the red dots give the percentage of the area of finite flattening.
Although the geometry of the neutral line in the matrix is completely different than in the stiff
layer (figure 9) similar conclusions can be drawn. The area of incremental flattening develops
much earlier and moves earlier and faster through the material than the area of finite flattening.
The outcome is that the area of finite flattening is always smaller than that of incremental
flattening. Layer-parallel shortening (equal to extension normal to the layer) of early deformation
first needs to be redone before finite flattening takes place. This is exactly the same mechanism as
in the hinge region of the stiff layers described in chapter 3.4.2.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

It is noteworthy that both the areas of finite and incremental flattening decrease after a certain
amount of far-field compression, whereas it is earlier the case for the area of incremental
flattening. This suggests that at a certain point the two fold limbs draw near to each other faster
than the area of flattening broadens. However, this effect does not affect the relation between the
area of incremental and finite flattening described above.

=}
~
5

25

o
-
N3

b)

2
w
5}

o
w
T

2
N
33l

....

o
[N
T

2
@

normalised area of compression

[=}

normalised distance between thick layers
&

2

=

a
T

o

. . . L 05 . . . . .
20 30 40 50 0 10 20 30 40 50
shortening in% shortening in%

o
=

Fig 15: a) Blue: Area of incremental flattening normal to the layers; Red: Area of finite flattening normal to
the layers. Incremental flattening occurs earlier in the deformation history and covers bigger areas.

b) Blue: Minimal distance between the two layers. This minimal distance is situated near the inflexion point;
Red: Maximal distance between the two layers measured normal to the layers at the fold hinge.

Figure 15b) shows another distinct difference between region of deformation 1 and 2. The minimal
distance between the layers is situated near the inflexion point (region 1) while the maximal
distance measured normal to the layers is situated in the hinge region. Both distances are
normalized with the initial distance between the two stiff layers. These two distances evolve
differently. Continuous layer-parallel compression in the hinge region leads to a steady increase of
the distance between the layers (red dots). The region near the inflexion point (blue dots),
however, is characterized by the three phases of deformation described in chapter 3.5.1. During
layer-parallel compression, this region undergoes the same layer-parallel shortening as in the fold
hinge and the blue dots lie behind the red ones. Deformation phase 2 is mainly characterized by
shearing and the normalized distance between the layers stays constant for a short while. Later in
the deformation history (phase 3), flattening normal to the layers leads to a decrease of the distance
between the layers. This is the case as soon as approximately 17% shortening is reached, which is
also the first appearance of the area of incremental flattening in figure 15a. The normalized
minimal distance falls below one (the initial value) for a far-field shortening of about 28%. This is
also the point where the area of finite flattening first occurs in figure 15a.
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Chapter 4

Asymmetric parasitic fold development
in multilayer systems

4.1. Introduction

The multilayer systems investigated in this chapter are always situated between two much thicker
layers like those described in chapter 3.5. The insights into double layer systems can be used to
investigate the multilayers set in between. The boundary conditions are the same as described in
chapter 2.5., horizontal compression with a free slip boundary at the bottom and an open surface at
the top. Although this simple set of boundary conditions is used, the presence of the two thicker
layers induces a complicated strain field in between. This chapter shows that under certain
circumstances, it is possible to get asymmetric parasitic folds. The model produces folds on two
scales, the primary folds and the parasitic folds. This feature is important because it is often
observed in nature.

The geometrical and numerical setup of the models presented in this chapter, which are the same

for every model is given in table 4. Further information is given in the text where the different
models are described.
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CHAPTER 4

ASYMMETRIC PARASITIC FOLD DEVELOPMENT IN MULTILAYER SYSTEMS

Setup for experiments on multilayer folds

Viscosity of stiff layers
Viscosity of the matrix
Initial layer thickness of both thicker layers

Initial layer thickness of
layers of the multilayer stack

Initial thickness of the matrix between
the layers of the multilayer stack

Initial thickness of matrix above
and below thick layers

Type of initial perturbation
for both thicker layers

Type of initial perturbation for
layers of the multilayer stack

Width of domain

Time increment

Horizontal resolution

w =100
fm =1
Hipicko=35

[_Ithin 0= 0]

H,=03

Houter() = 20

Half cosine. Same perturbation for upper
and lower interface of both layers.

Random white noise. Same perturbation for upper and
lower interface of each layers but different perturbation for
every layer.

L. = 40 (half wavelength for a single layer with an initial
thickness of 5)

At =107
251 nodes

Table 4: Fundamental definitions for the experiments on multilayer folds.

4.2.

Influence of the amplitude of the initial perturbation

Without an initial perturbation of the layer interfaces, all layers would stay horizontal and only
layer-parallel shortening and thickening would occur. To study the influence of this initial
perturbation a multilayer system is used with the setup given in table 5.

Setup for experiments on multilayer folds with 15 thin layers

1 1 1

Amplitude of initial perturbation Apicko

= and , respectively
of the thicker layers H,..0 1000 5000 10000
Amplitude of initial perturbation Apino 1 for all layers
of layers of the multilayer stack H,., 10
Vertical resolution over thick layers 9 nodes Total
Vertical resolution over thin layers 9 nodes Totall resolution

vertica

Vertical resolution over matrix between layers = 9 nodes 313 nodes 78563
Vertical resolution over matrix outside layers 25 nodes nodes

Table 5: Geometrical and numerical setup for models with 15 thin layers in the multilayer stack. This table
is complemented by table 4.
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Figure 16 shows the deformed multilayer sequence after 50% shortening for initial amplitude to
thickness ratios of 107, 5-10” and 10-107 for both thick layers. The initial amplitude of the thin
layers is constant for all three models. In the first case of a ratio of 10 (figure 16a) there are only
real parasitic folds in the hinge region. Near the inflexion point the thin layers are straight and only
small parasitic folds are developed in the transition zone. The major part of parasitic folds are
approximately symmetric. Only those in the transition zone are slightly asymmetric. In the third
case of a ratio of 10-10° (figure 16¢) the parasitic folds are strongly developed in the whole
domain but they are not asymmetric. The intermediate case of initial amplitude to thickness ratio
of the thick layers of 5-107 (figure 16b) develops parasitic folds throughout the whole domain.
Additionally the parasitic folds near the inflexion point are clearly asymmetric.

Apicko _ 1 Ayicko _ 1 Ayicko _ 1
b)

thick 0 1000 H/hickO 5000 chick 0 10000

0 5 10 15

Fig. 16: Deformed multilayer sequence between two much thicker layers after 50% of far-field shortening.
Three different models are shown with a different initial ratio of amplitude to layer thickness for the thick
layers. a) 107, b) 5-10° and c) 10-10°

The amplitude of the initial perturbation of the thick layers strongly controls on the development
of folds in the multilayer stack. The smaller this initial perturbation is, the later and the slower the
thick layers amplify. In other words, a small initial amplitude extends the phase of layer-parallel
compression before amplification and rotation of the thick layers start. This extended phase of
layer-parallel compression for small initial amplitudes allows the thin layers to reach higher
amplitudes before buckling of the thick layers starts.
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This is illustrated in figure 17 for the two cases of an initial amplitude to thickness ratio of the
thick layers of 10~ and 10-10°. The averaged amplitude of the two thick layers is in blue and the
averaged amplitude of the thin layers in the hinge region in red. Both amplitudes are normalized
with their corresponding initial layer thickness. The red and blue columns, which are set by eye,
indicate the initiation of buckling of the thin and the thick layers, respectively. In both cases the
initiation of buckling of the thin layers is approximately at 9% shortening because in both models
the initial amplitude to thickness ratio of the thin layers is the same. Buckling of the thick layers
influences the calculation of the averaged amplitude of the thin layers. Therefore the normalized
amplitudes of the thin layers to the right of the blue columns are not to be considered here.

The main difference between the two models is the start of buckling of the thick layers. With an
initial amplitude to thickness ratio of 10° (figure 17a) this happens at around 17% far-field
shortening while for the case of the higher ratio of 10107 (figure 17b) this happens at around 32%
shortening. The normalized averaged thickness of the thin layers in the first case reaches a value of
about 2 when the thick layers start to buckle. In the second case, the thin layers have more time to
amplify and reach a value of 4.5. The intermediate case with initial amplitude to thickness ratio of
the thick layers of 5-107 is not shown here but would lie between the two. Figure 16 suggests that
for this thesis, this is the most desired case and, for further investigations, initial amplitude to
thickness ratio of the thick layers of 5-107 is used.

Athick() _ 1 AthickO _ 1
a) chickO 1000 b) chickO 10000
10 w 0

9 9

8 8r
@ 7 @ 7
= =
2 2
= 6 2 6r
= =
@Q @Q
o B o BF
Q Q
2 kil
E o4 g4
s | N B O et =
= =

3 3

2 = 2

1 1

0% L o NS | L L L o] S L e LR L

Q 10 20 30 40 50 Q 10 20 30 40 50
shortening in% shortening in%

Fig. 17: Red: Averaged amplitude of the thin layers in the hinge region normalized with the initial layer
thickness of the thin layers; Blue: Averaged amplitude of the two thick layers normalized with the initial
layer thickness of the thick layers. The two beams, which are set by eye, indicate the initiation of buckling for
the thin layers (ved) and the thick layer (blue), respectively. The two subplots are modeled with a different
initial ratio of amplitude to layer thickness for the thick layers. The ratio for the thin layers is the same for
both subplots.
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The fact that buckling of the thick layers is initiated later for small initial amplitudes is also
observable in figure 18, which shows the normalized distance between the two thick layers in the
hinge region (red dots) and the minimal distance at the inflexion point (blue dots). For both initial
amplitude to thickness ratios, of the thick layers the distance at the fold hinge increases with time.
This increase is roughly the same in both cases and it indicates a layer-parallel shortening of the
hinge region. At the inflexion point the two thick layers draw nearer after a certain amount of far-
field shortening, but this happens much earlier for the first case of an initial amplitude to thickness
ratio of /1000 (figure 18a) than for the second case of an initial ratio of ' 000 (figure 18b).

Near the inflexion point the phase of shearing without flattening (zero slope of the blue points)
lasts longer in the second case (figure 18b) and more layer-parallel shortening is accumulated at
this point, which is expressed as the maximum value of the blue dots. This leads to the higher
amplitudes of the multilayer stack between the thick layers observed in figure 17. The short period
of shearing in the first case is followed by a strong flattening phase (high negative slope of the
blue dots in figure 18a) which even shortens the minimal distance at the inflexion point below the
initial distance. In other words the first model of initial amplitude to thickness ratio of 1010~ for
the thick layers reaches a state with finite flattening between the two thick layers.

Athick() _ 1 AthickO _ 1
(1) chickO 1000 b) chickO 10000
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Fig. 18: Blue: Minimal distance between the two thick layers. This minimal distance is situated near the
inflexion point; Red: Maximal distance between the two thick layers measured normal to the layers at the
fold hinge. Between the two thick layers a multilayer stack with 15 layers is situated. a) and b) represent two
models with a different initial amplitude to thickness ratio of the thick layers.
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4.3. Number of layers in the multilayer stack

For the following investigation of the influence of the number of layers in a multilayer stack on the
development of asymmetric parasitic folds the setup summarized in table 6 is used.

Setup for experiments on multilayer folds

Amplitude of initial perturbation Apivo 1 for both layers
of the thicker layers H,o 5000
Amplitude of initial perturbation Ayino _ 1 for all layers
of layers of the multilayer stack H,.. 10
Matri Matri tside | Total
Thick layers | Thin layers e alrix outsige | toid )
between layers | layers resolution
g I layer system 17 nodes 17 nodes 17 nodes 41 nodes 40411 nodes
% 5 layer system 11 nodes 11 nodes 11 nodes 25 nodes 43139 nodes
[
£ 10 layer system | 9 nodes 9 nodes 9 nodes 25 nodes 58483 nodes
.§ 15 layer system | 9 nodes 9 nodes 9 nodes 25 nodes 78563 nodes
~
L 20 layer system 9 nodes 9 nodes 9 nodes 25 nodes 98643 nodes

Table 6: Geometrical and numerical setup for models with a different number of layers in the multilayer
stack. This table is complemented by table 4.

Figure 19 shows the results after 50% far-field shortening of five models with a different number
of thin layers. The parasitic folds evolve differently in the different models. For one and five thin
layers (figures 19a and b) the parasitic folds mainly develop in the hinge region of the primary fold
where they are approximately symmetric. Between the limbs of the thick layers the thin layers are
almost straight. The transition zone between the hinge region and the fold limb contains only
minor parasitic folds that show a slight asymmetry. The ten-layer-model (figure 19c) shows higher
amplitude symmetric folds in the hinge region compared to the previous two models. The
amplitudes of the parasitic folds decrease thereby from hinge to inflexion point. The parasitic folds
near the inflexion point are well developed and clearly asymmetric (S-shaped for the displayed
part of the fold).

Models with 15 and 20 thin layers (figures 19d and e, respectively) show even more distinct
asymmetric parasitic folds between the fold limbs of the two thick layers. They have very well
developed S-shapes with relatively high amplitude. As in the previous models, the amplitudes
increase towards the primary fold hinge, where the parasitic folds are symmetric. Note that figure
19d is the same as figure 16b.
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a) [ thin layer b) 5 thin layers e 20 thin layers

10 thin layers

0 5 10 15

Fig. 19: a) — e): Geometry of five different multilayer models after 50% far-field shortening. The different
models are built of a different number of thin layers (1, 5, 10, 15 and 20) between two thick layers.

) Intern geometry between the two layers of a double layer system after 50% shortening. Picture taken from
figure 12. See chapter 3.5.1 for further information.

A special feature of models with 15 and 20 layers is to be noted. The asymmetric parasitic folds of
the multilayer stack lying upon each other are arranged in a way that reproduces the internal
geometry between a deformed double layer system shown in figure 19f. The S-shape near the
inflexion point and the tail-shape in the transition zone of the originally vertical beams described
in chapter 3.5.1. are clear in the multilayer sequence indicated in light red. This special geometry
is better developed in the model with 20 thin layers but is still identifiable with 15 layers. The
model with a ten-layers stack slightly displays this feature. The much higher amplitudes of the two
layers in the inlay of figure 19 compared to the five presented multilayer models is due to the
higher amplitude of the initial cosine perturbation of the double layer system. The described
geometry between the two thick layers is therefore even more obvious, but it has nothing to do
with the presence or absence of the thin layers in between.
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For further investigation of the effect of the number of layers on the development of asymmetric
parasitic folds figure 20 is considered. It shows the evolution of the averaged amplitude of the thin
layers in the hinge region (red dots) as well as the averaged amplitude of the thick layers (blue
dots) for three different models built up of 5, 10 and 15 thin layers, respectively. All amplitudes
are normalized with their corresponding initial layer thickness. For both the thin and the thick
layers the point of initiation of buckling indicated with the red and the blue beam, respectively, is
approximately identical for all three models. It is at about 9% shortening for the thin layers and at
about 24% for the thick layers. Also the amplification of the thick layers is approximately the same
for all three models.

The main difference is the amplification of the thin layers of the multilayer stack. The more layers
a multilayer stack is made of, the faster the individual thin layers amplify. For a model with a high
number of layers, this leads to bigger amplitude of the thin layers at the initiation of buckling of
the thick layers. This difference is not very big between the three models but still it is
recognizable. Especially the thin layers in the model with five layers (figure 20a) have noticeable
lower amplitude at the point of buckling initiation of the thick layers than the two other models.

a) 5 layers b) 10 layers c) 15 layers

o ~ @ w©
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Fig. 20: Red: Averaged amplitude of the thin layers in the hinge region normalized with the initial layer
thickness of the thin layers; Blue: Averaged amplitude of the two thick layers normalized with the initial
layer thickness of the thick layers. The two beams indicate the initiation of buckling for the thin layers (red)
and the thick layer (blue), respectively. The three subplots are modeled with a different number of thin
layers.

For the three models with 5, 10 and 15 thin layers, respectively, the distance between the two thick
layers is shown in figure 21. The red dots represent the distance measured normal to the folds in
the hinge region while the blue dots show the minimal distance between the two layers, which is
situated at the inflexion point. In all models the two distances evolve similarly up to a certain
amount of far-field shortening. After this first phase of deformation the two lines separate. The
distance in the hinge region increases steadily while the distance at the inflexion point increases
slower and slower until it reaches a maximum value and decreases again. The far-field shortening
at which the blue dots reach their maximum, is roughly the same for the three models, at 34%.
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The main difference between the three models is the amount of shortening necessary to see a
difference between the blue and the red dots. This separation takes place earlier for smaller
numbers of thin layers. For the model with 15 thin layers (figure 21c) this separation takes place
immediately before the distance at the inflexion point reaches its maximum and then decreases. On
the contrary, the two lines in the model with five thin layers (figure 21a) separate at about 18%
shortening and it needs another 16% before the maximum distance at the inflexion point is
reached. This results in a much shallower gradient of the blue line between the separation and the
maximum point, which means a slower increase of the distance between the two thick layers at the
inflexion point compared to the models with more thin layers. With the knowledge of the initiation
of buckling of the thick layers (figure 20) this leads to the following conclusion.

In a multilayer stack comprising of a small number of thin layers, shortly after the thick layers start
to buckle the distance between the thick layers at the inflexion point evolve differently than in the
hinge region. The distance at the inflexion point increases slowly. This slow increase decelerates
in a relatively long phase and transforms to a fast reduction of the distance at the inflexion point.
In a multilayer stack of many thin layers, the distance between the two thick layers increases as
fast as the distance in the hinge region even after buckling of the thick layers has started. The
distance at the inflexion point abruptly stops to increase and the two layers start to draw closer
slowly. This abrupt change from an increasing to a decreasing distance at the inflexion point
suggests a very short phase of shearing without flattening, while this phase lasts much longer in
the case of a small number of thin layers. In all models the distance between the two thick layers at
the inflexion point does not reach the initial value after 50% shortening, although the model with
only five thin layers almost does, since the decrease of the distance is faster than in the models
with more thin layers.

a) 5 layers b) 10 layers c) 15 layers
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Fig. 21: Blue: Minimal distance between the two thick layers. This minimal distance is situated near the
inflexion point; Red: Maximal distance between the two thick layers measured normal to the layers at the
fold hinge. The three subplots are modeled with a different number of thin layers situated between the two
thick layers.
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Chapter 5

Discussion

5.1. Conditions for the occurrence of asymmetric parasitic folds

The insights into the strain distribution between two thick layers from chapter 3.5. can be used to
understand the occurrence or absence of asymmetric parasitic folds in a multilayer stack situated
between two thick layers. Figures 17 and 20 show that both the initial amplitude of the thick layers
and the number of thin layers in between cause a change of the amplitude of the thin layers at the
point of buckling initiation of the thick layers.

Schmid and Podladchikov, 2005 showed that the layers of a multilayer stack amplify faster than an
isolated single layer and that the growth rate increases with an increasing number of layers. They
derived an analytical solution for the growth rate of a multilayer stack, but this solution cannot be
applied to the models of this study because their constraint of the number of layers is not fulfilled
here. Nevertheless this multilayer effect on the growth rate is clear in figure 20. The second effect,
the initial perturbation of the thick layers, can easily be understood assuming that the amplification
of the two thick layers can be approximated with the amplification law of a single layer (equation
18). It is obvious that a smaller initial amplitude leads to a later initiation of buckling and a slower
amplification.

Summarizing the amplitude of the thin layers at the point of buckling initiation of the thick layers
increases with a higher number of thin layers as well as with a smaller initial perturbation of the
thick layers. For the occurrence of asymmetric parasitic folds near the inflexion point, it seems to
be necessary that the thin layers reach a sufficient amplitude before the thick layers start to buckle.
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The three phases of deformation of a double layer system described in chapter 3.5.1. need to be
reformulated for a multilayer stack between two layers.

1) The two thick layers have not started to buckle. The dominant deformation mechanism in the
multilayer stack is layer-parallel compression. Due to the much higher initial amplitude the thin
layers start to buckle and build symmetric folds.

2) The thick layers start to buckle which initiates a shear deformation in the multilayer stack with
a shearing plane parallel to the thick layers. Shearing rotates the folds of the thin layers and
produces their asymmetry.

3) The increasing amplification and closing of the thick layers leads to flattening of the multilayer
stack in between with a flattening direction perpendicular to the thick layers. This flattening
reduces the amplitudes of the thin layers. Shearing is still active during this deformation phase.

As already stated in chapter 3.5.2., these three phases of deformation only apply to the region near
the inflexion point of the big-scale fold, and they can be tracked in figure 22. The figure is
calculated with a multilayer stack with 15 thin layers and an initial amplitude of 5-107 for the two
thick layers (see tables 4 and 6 for specifications). The final geometry of figure 22f is the same as
shown in figures 16b and 19d. Subplot 22a visualizes the normalized distance between the two
thick layers in the hinge region normal to the layers in red and the minimal normalized distance
between the thick layers, situated at the inflexion point in blue. The normalized averaged
amplitude of the thick layers is shown in blue in subplot 22b while the normalized averaged
amplitude of the thin layers in the hinge region is shown in red. The vertical red lines indicate
which amount of shortening the four geometries (subplots22c¢ to f) are drawn at.

Buckling of the thick layers starts at about 24% shortening, so subplot 22¢ at 20% shortening
shows the geometry before the buckling initiation. The thin layers are already strongly amplified
while the thick layers are still flat. This state represents the first phase of deformation. Subplot22d
at 30% shortening is drawn at the transition from the deformation phase 1 to 2. Buckling of the
thick layers is initiated though the amplitude is still very low. The deformation mechanism in the
multilayer stack is a combination of layer-parallel compression, which further amplifies the thin
layers, and shearing due to buckling of the thick layers, which makes the existing parasitic folds
asymmetric. Subplot 22¢ at 40% shortening shows the transition from the deformation phase 2 to
3. The thin layers of the multilayer stack do not amplify anymore but experience flattening normal
to the thick layers, although flattening is not visible. The amplitude of the two thick layers
increased and induced more shearing in the multilayer stack. The folds of the thin layers are
obviously asymmetric now.
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After 50% shortening in subplot 22f the deformation phase 3 is reached. Flattening of the
multilayer stack near the inflexion point further decreases the folds of the thin layers and some of
them even disappear. Those that survive become very asymmetric with a very long limb on the
right side and a very short one on the left.

normalisad distance between thick layers.
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Fig. 22: Four stages of deformation in a multilayer stack with 15 thin layers. For numerical and geometrical
specifications see table 4 and 6. a) Distance between the two thick layers normalized with the initial
thickness of the thick layers. Red: Distance at the fold hinge normal to the layer boundary; Blue: Minimal
distance, situated near the inflexion point. b) Red: Averaged amplitude of the thin layers near the fold hinge
normalized with the initial thickness of the thin layers. Blue: averaged amplitude of the thick layers
normalized with the initial thickness of the thick layers. c¢) — f) Geometries of the multilayer system at
different amount of far-field shortening indicated with red lines in a) and b). Three initially vertical fold
stacks are indicated in light red. For more information see text.
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This evolution of the asymmetric parasitic folds as well as the investigations in chapter4 suggest
that the thin layers necessarily need to develop some amplitude before the thick layers start to
buckle. It is the initial layer-parallel compression that produces symmetric folds and superimposed
shearing that makes them asymmetric. In other words two sequential processes are necessary to
produce asymmetric parasitic folds in a multilayer stack, although these two processes are both
induced by constant far-field boundary conditions. The folds of the multilayer stack that amplified
too little at the point of buckling initiation of the thick layers disappear during the third
deformation phase when flattening normal to the thick layers decreases the amplitudes of the thin
layers.

The selection of the folds that outlast the flattening phase is mostly due to the amplitude at the
point of buckling initiation on the thick layers. Interestingly, the high amplitude folds at this point
lie on top of each other and virtually build a vertical beam. Three of them are indicated in light red
in figure 22¢. The surrounding of such fold stacks is made up of layers with lower amplitudes and
the folds disappear during the third deformation phase. The fold stack itself outlasts the
deformation and deforms in the same way as the matrix between a double layer system without a
multilayer stack in between (figures 22d—f and figure 12).

This behavior suggests that the deformation and the strain distribution between the two thick
layers is approximately the same with and without a multilayer stack in between. This proposition
is supported by figure 23 which shows the same multilayer sequence as in figure 22f with a double

layer overlain in transparent light green. The double layer system is calculated with an identical
setup as the multilayer system, only that no thin layers are set in between. After 50% shortening
the thick layers of the two different systems are almost deformed identically. Since the multilayer
stack does not influence the behavior of the thick layers, it is the strain distribution of the double
layer system that controls the arrangement of the asymmetric parasitic fold stacks. Once these fold
stacks are initiated in the first deformation phase they behave like passive beams during the second
and the third phase.

Fig. 23: Black: multilayer system with 15 thin layers situated between
two thick layers after 50% shortening. For numerical and geometrical
specifications see table 4 and 6. Tramsparent green: double layer
system with exactly the same setup as the multilayer system but without
the thin layers.
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5.2. Model assumptions compared with a natural example

The amplitudes of the initial perturbation for the thin and the thick layers found in chapter4.2. to
produce the most suitable multilayer folds for this study need some more consideration and
comparison with examples occurring in nature. The initial amplitudes are always defined as values
normalized with the corresponding initial layer thickness and can be converted into absolute

values.
.. . . 1
Initial amplitude of thin layers Appin,avsonte = Aspin, normasea H pin = 7570-1 = 0.01 (27)
.. . . 1
Inltlal amplltUde Of tthk layel's Athick,absnlute = Athick,normalised.chick = ms = 0001 (28)

It is questionable whether absolute amplitude for the thick layers of one order of magnitude
smaller than for the thin layers makes sense in nature. One could think of aturbidite sequence with
many small events, representing the equally spaced multilayer stack, and a few mega events,
representing the thicker layers, like the one shown in figure 24. The initial perturbation before
folding of such a sequence is mostly due to deposition, e.g. ripple marks or groove casts. The thick
layers are expected to have bigger perturbations, since the flow velocity of such a deposition is
higher and therefore produces bigger ripples or other sole marks. From this point of view the used
initial perturbations of the modeled multilayer stack are ill chosen. Nevertheless, this set of initial
perturbations produces the best parasitic folds.

Fig. 24: Dr. Guy Simpson sitting in front of a turbidite sequence in the Makran area, south-eastern Iran. The
sequence is composed of many approximately equally spaced thin layers and few thicker layers like the one
to the right of Guy Simpson.
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Not only the amplitude but also the type of the initial perturbation is to be considered. While on
the thick layers a half cosine wave is imposed the thin layers are perturbed randomly. This half
cosine wave is chosen in a way that the perturbation has the dominant wavelength of the thick
layer for the single layer case. At the same time, the thin layers first need to establish the dominant
wavelength out of the random perturbation before the real amplification begins. This process takes
some time that the thick layers do not need. The high initial perturbation for the thin layers and the
low initial perturbation for the thick layers reduce this time with respect to the buckle initiation of
the thick layers. Using these initial perturbations allows the thin layers to buckle, which is desired.
From this point of view the amplitudes of the initial perturbations do not need to be nature-like.

The described problem could be solved with a model, which does not only spans over a half
wavelength but over three or four full wavelengths. In the current model the half cosine wave
needs to be imposed on the thick layers. In a much broader model the initial perturbation of the
thick layers could be random with an amplitude equal to or higher than for the thin layers. Such a
model would be much more realistic but a new problem would appear. If the resolution should be
the same as for the current model, a much higher number of nodes in the horizontal direction is
needed. 1506 nodes would be needed for a model spanning over three full wavelengths resulting in
a total number of 591858 nodes for a model with 20 thin layers. This amount of nodes cannot be
handled with a standard personal computer and more sophisticated computer setups and
programming tools are needed.

Considering a turbidite sequence, the assumption of initially parallel disturbed layers, meaning that
the same perturbation is used for both the upper and the lower interface of each layer, is a
simplification. Bigger perturbations are expected to be at the bottom of a stiff layer due to the
higher flow velocity. The decreasing flow velocity during deposition also decreases the height of
the perturbations. For a more accurate initial perturbation a lower and upper amplitude for both the
thin and the thick layers is needed, whereas the upper amplitude is smaller. The effect of such
reduced initial amplitude at the upper interfaces on the buckling process would be very little, since
the buckling is controlled by the stronger perturbation of a layer, which is at the lower interface.

The thicker layers bounding the multilayer stack are not necessarily individual layers. As Schmid
and Podladchikov, 2005 showed, thicker layers can also be multilayer stacks with much smaller
interlayers, which effectively behave as single layers. One can imagine a turbidite sequence, which
does not change in thickness of individual layers but in spacing between layers. Also many other
geological settings than the discussed turbidite sequence can be build as a multilayer stack.
Multilayers can occur from microscopic scale like the individual mica layers of a schist up to km-
scale like the folds in a mountain belt.
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Chapter 6

Conclusions and prospects

6.1. Conclusions

The investigation of a multilayer stack bounded by two much thicker layers and a double layer
system built up of the two thick layers only, reveals that the deformation of the two bounding
layers is not influenced by the presence of the multilayer stack in between. Thereby all layers and
the matrix between and around them are linear viscous. The deformation history between the two
thick layers can be divided into three phases:

1) Layer-parallel compression without buckling of the thick layers. The thin layers buckle since
their initial amplitude is higher. They build symmetric folds

2) Buckling of the thick layers causes shearing in between. The thin layers become asymmetric.

3) High amplification of the thick layers causes flattening between and normal to the thick layers.
The amplitudes of the thin layers decrease and only the biggest asymmetric folds survive.

Whether a fold of a thin layer outlasts the third deformation phase or not mainly depends on its
amplitude when buckling of the two thick layers initiates. The higher this amplitude is, the less
likely the fold is flattened. On one hand this obviously depends on the amplitude of the initial
perturbations of the thin and the thick layers. On the other hand the number of thin layers
influences the amplification of the multilayer stack. The more layers the stack contains, the faster
they amplify. Therefore, a multilayer stack with a high number of thin layers and a high initial
perturbation is most likely to develop asymmetric parasitic folds.

The asymmetric folds that survive the third deformation phase are vertically stacked at the point of

buckling initiation of the thick layers. This vertical fold stack deforms almost like a passive beam
during the second and third deformation phase while the smaller surrounding folds disappear.
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CHAPTER 6 CONCLUSIONS

The numerical approach of this study allows the calculation of finite strain ellipses and their
coloring either with the accumulated von Mises equivalent strain or with the finite rotation angle
due to rigid body rotation. This visualization technique applied to linear viscous single layer folds
shows that the deformation mechanism in the layer clearly differs from the surrounding matrix.
The layer is dominated by rigid body rotation without much shape change while the opposite
applies for the matrix. In the amplifying layer two different kinds of neutral lines move from the
outer to the inner side of the layer. The incremental neutral line, which moves earlier through the
fold, is defined as the position where the layer-parallel strain rate is equal to zero. The finite
neutral line moves later through the growing fold and is defined as the boundary between finite
layer-parallel extension and compression. The movement of these two neutral lines show that the
outer arc of a growing fold can easily be under a state of layer-parallel extension although the
finite strain is still compressive.

6.2. Prospects

Now that the calculation and visualization of the finite strain ellipses is developed, many different
problems are waiting to be visualized properly. Although many problems are numerically solved
and the visualization does not seem to be a major scientific challenge, it would help to understand
the solutions better, especially for field geologists, analogue modelers and students who are used
to these ellipses.

Going on with the multilayer system used in this study the next step would be the investigation of
the spacing between the thin layers and its influence on the development of parasitic folds.
According to Schmid and Podladchikov, 2005 one would expect that narrowly spaced thin layers
amplify slower. Therefore the chance to develop asymmetric parasitic folds near the inflexion
point of the big scale fold is smaller.

In this study a basic model is used to investigate a multilayer system. This model could be changed
or expanded in many ways, like:

- Different viscosity contrasts between the matrix and the thin and the thick layers, respectively
- Different initial perturbations which are closer to nature (problems with this, see chapter5.2.)
- New geometrical setups, e.g. only one thick layer with a multilayer stack on top

« More sophisticated rheologies like power-law viscosity or visco-elasticity

« Heterogeneities in all possible parameters

These changes of the model are manifold and a huge amount of parameters are to be investigated.
Therefore a basic model was chosen for this study and further changes should be considered
wisely before done, since not all of them have a significant effect on the development of parasitic
folds. Especially the refinement of the rheology would be interesting to know whether it has a big
effect or not, since this modification is the most time-consuming.

52



Acknowledgments

First and most of all I would like to thank Dr. Stefan Schmalholz, the Supervisor of this diploma
project. You always motivated me to work hard, to go into detail and to try to really understand the
physical meaning behind the problems. The endless discussions in your office and also during the
coffee breaks made this learning process more pleasant and helped me a lot to understand both the
physics and the numerics. Talking to you is better than any text book will ever be. I am really
looking forward to my PhD project with you as my Supervisor. Stefan did not really need to
motivate me because my motivation for numerical simulations grew during the outstanding
lectures of Dr. Guy Simpson and Dr. Taras Gerya. You two introduced me to the finite difference
and the finite element method in a very understandable way. I wish that more students could hear
lectures like yours. I thank Prof. Jean-Pierre Burg for the possibility to join the field trip to the
Makran region in Iran where the idea of this project arose together with Stefan and Guy. We had a
great time and [ will forever remember our smoky evenings. You also provided the infrastructure
(computer) necessary for this project. Thomas Kocher, I thank you for your time that you took
when I did not dare to go to Stefan's office because I thought that I had already taxed his patience
too much. For the final review and orthographic corrections I thank Neil Allen. [ hope my English
was not too bloodcurdling.

Further, I want to thank the people in the Earth Science Department of ETH. Thank you for many
talks and chats during the coffee breaks and at the Friday beer. A very big thank you goes to my
fellow students, Felix Sager (thank you for your brownies, but please add nuts the next time, and
do not burn them), Konrad Zeltner (I will miss your unhurried face on the other side of my
computer), André Seiler (always ambriif, never ambrii), Gaudenz Deplazes, Stefan Bucher, Cecile
Matter, Marc Rierola, Michela Carradori, Flavio Matter, Bettina Baitsch-Ghirardello, Stephan
Niggli, Pascal Spaar and everyone I forgot. You always made sure that I eat my lunch and did not
stay behind my computer. We really had a great time here in Zurich and I hope to see many of you
again after we have finished. ...and... Our Geofest was the best Geofest ever!

I want to thank my father who always let me decide which way I want to go and always stood
behind my decisions. Without your support (not to forget financial as well) my studies would
never have been possible. Last, but definitely not least, I want to thank you, Yolanda. Sharing the
hard time of finishing the project with you made it so much easier, I hope for both of us. The time
with you gave me the badly needed balance and helped me to think clearly afterwards. Your love
supported me more than I can express.

53



References

Biot, M.A., 1961: Theory of folding of stratified viscoelastic media and its implications in
tectonics and orogenesis; Geol. Soc. Am. Bull. 72, 1595-1620

Casey, M. and Butler, R.-W.H., 2004: Modelling approaches to understanding fold development:
implications for hydrocarbon reservoirs; Marine and Petroleum Geology 21, 933-946

Fletcher, R.C., 1977: Folding of a single viscous layer: Exact infinitesimal-amplitude solution;
Tectonophysics 39, 593-606

Hughes, T.J.R., 2000: The finite element method: Linear static and dynamic finite element
analysis; Dover Publications, Mineola; ISBN 0-486-41181-8

Hughes, T.J.R., Liu, W.K. and Brooks, A., 1979: Finite element analysis of incompressible viscous
flows by the penalty function formulation; J. Computational Physics 30, 1-60

Pelletier, D., Fortin, A. and Camarero, R., 1989: Are fem solutions of incompressible flows really
incompressible? (Or how simple flows can cause headaches!); Int. J. for numerical methods
in fluids 9, 99-112

Ramsay, J.G. and Huber, M.1., 1989: The techniques of modern structural geology, Vol. 1: Strain
analysis, 4th edition; Academic Press, London; ISBN 0-12-576921-0

Schmalholz, S.M., Podladchikov, Y.Y. and Jamtveit, B., 2005: Structural softening of the
lithosphere; Terra Nova 17, 66-72

Schmid, D. and Podladchikov, Y.Y., 2005: Fold amplification rates and dominant wavelength
selection in multilayer stacks; Philosophical Magazine ,

Schmid, D.W., 2005: Rigid polygons in shear, High-Strain Zones: Structure and Physical
Properties. Geol. Soc. London Special Publications 245, 421-431

Smith, J.V. and Marshall, B., 1993: Implications of discrete strain compatibility in multilayer
folding; Tectonophysics 222, 107-117

Thomasset, F., 1981: Implementation of finite element methods for Navier-Stokes equations;
Springer-Verlag, New York; ISBN 0-387-10771-1

Williams, J.R., 1980: Similar and chevron folds in multilayers using finite-element and geometric
models; Tectonophysics 65, 323-338

Zienkiewicz, O.C. and Taylor, R.L., 1994: The finite element method, Vol. 1: Basic formulation
and linear problems, 4th edition, McGraw-Hill Book Company, Maidenhead; ISBN 0-07-
084174-8

54



Appendix A

Mechanical equations and their discretization
with the finite element method

Al. Derivation of the governing equations

The equations governing the two-dimensional displacement in an incompressible viscous solid are
derived by combining the following four relations:

oo, GO'X),
ox * oy =0

1) Force balance o0, . oo, . (AD)
ox dy

where 0. and o, are normal stresses in the x- and y-direction, respectively. oy, is the
corresponding shear stress. Compressive stresses are negative. Note that gravity is ignored.

. ov, ov,
2) Conservation of mass P + 3y - 0 (A2)

where v, and v, are the components of velocity in the x- and y-direction, respectively. The
assumption of mass conservation implies that an incompressible medium is considered.
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O-XX 1 2 l’l O O é ’XX
3) Rheological relation (o, = —pjl + |0 2u 0f€", (A3)
o 00 ully',

Xy )

where p is the pressure in the rock and y is the viscosity. €', and €' are deviatoric strain
rates in the x- and y-direction, respectively. y',, is the deviatoric rotation rate defined as

twice the deviatoric shear strain rate €., which is not computed here. This rheological

Xy s
equation defines an incompressible pure viscous medium.

éxx avx/ax
4) Kinematic equation et = ov 1oy .
ny 6Vx/ay+av},/6x

This kinematic equation finally defines the relationship between the total strain rates (€.,

€, ) and the rotation rate y ,, , respectively and the velocity field.

Using matrix notation, these four equations can be written more compactly as

1) Force balance B'G =0 (A1)
2) Conservation of mass Vi =0 (A2)
3) Rheological relation G = —pm + D& (A3)
4) Kinematic equation ¢ = BY (A4)
where
olox 0
B =1 0 ooy (A5)
oloy olox
O-XX
G =0, (A6)
o,
_ |olox
V= Iﬁ/ay} (A7)
B (A8)
Vy
1
m=1l (A9)
0
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2u 0 0
D={0 2u 0
0 0
éXX
€ = éyy
yxy
é,.\‘x
€ = é’yy
y',\'y

With the definition of the deviatoric strain rates, which is

it is possible to rewrite equation (A3) in terms of total strain rates.
G = —pm + DE
where the new rheological matrix D is defined as

fou =lhyp 0
D= |-y *Lu 0
0 0 u

(A10)

(Al1)

(A12)

(A13)

(A14)

(A15)

The four equations((Al), (A2), (A14) and (A4)) can be rearranged in a way that the stresses and

strain rates are eliminated. First one substitutes equation (Al4) into (A1) which gives

B'Dé — B'mp =0

Substitution of equation (A4) in (A16) leads to the desired elimination.

B"DBV — B'mp =0

The multiplication of B and m in the second term is equivalent to the Nabla operator.

Thus the governing equations are

B'DBY — Vp =0
Viy =0

which is a set of three equations for the three unknowns v,, v, and p.
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A2. Incompressibility with the finite element method

The incompressibility described by equation (A2) is not implemented directly in the finite element
code. It is necessary to assume a compressible medium and converge the solution towards
incompressibility within an iteration loop. Therefore, a more general compressible formulation of
the equation (A2) is necessary.

(A2) becomes EYR —K (V'-9) (A19)

where K is the incompressibility or the penalty parameter.

The two governing equations after all these steps have the following form:
B'DBY — Vp =0 (A20)

(A21)

A3. Discretization of equation (A20)

In the next two sections the discretization of equations (A20) and (A21) is carried out. For this
purpose two different sets of shape functions are needed, one for the velocities (V,) and one for the
pressure (N,). The velocity shape functions are bi-quadratic and continuous over the element
boundaries, while the pressure shape functions are linear and discontinuous over the element
boundaries. The corresponding element is a nine-node quadrilateral element with nine integration
points. For further details see Appendix B. The techniques used to discretise equation (A20) and
(A21) are described in many textbooks (e.g. Zienkiewicz and Taylor, 1994; Hughes et al., 1979).

For a more intuitive representation during the subsequent steps the terms are fully written out.
Equation (A20) then has the following form.

o4 Ov, 2 O0v, N 0 aVX+ ov, op
ax\3"ax 3%,

[ “y
0 0 0 0
YA ey g ¥ (A20)
0 2 Ov, 4 0v, 0 6vx+ ov, op
oy 3“6)/ 3“6)} ox “ay u@x oy
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The first step in the discretization algorithm of equation (A20) consists of applying the shape
functions as weighting functions (Galerkin approach), which in this case are the velocity shape

functions. At the same time the integration over the whole finite element is carried out to get the
weighted residual formulation.

402 o | s I -

oy

(A21)
| @ 2 ov, 4 O0v, rl 0 ov, ov, 3 rop _
fva(a ( 6y+3 ay))dxdy—i—ﬂNv(ax(u By +u ox dx dy ﬂNV—aydxdy—O

Integrating every term by parts moves the spatial derivatives to the Galerkin shape functions and
the weak formulation of the weighted residuals results. The arising boundary terms in this
operation are ignored thereby as well as the changing sign, since the sign changes in every term

ﬂaazz (4 ov, 2 v )

N, PEAZSCATS P ﬂaNVT dxdy=0
Wyt HGy |dvdy p dxdy=

ax 3"y
; * , VT (A22)
o \ 385, a S a e PRAE

At this point the physical values v, v, and p are approximated within the finite element. The
approximation of the velocities are realised with the property vector containing the velocities at
each of the nine nodes and the corresponding shape functions.

v.r]

The property vector for pressures only contain one pressure value for each element (first entry) and
two entries for the slopes of the linear dependency on the position in the two dimensional space

Therefore the approximation has the following form.

Py
:[N,ﬂ sz Np3] )2 =N

oD (A24)
Ps
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Equations (A23) and (A24) are substituted into equation (A22) whereas the property vectors V.,

v, and P are not incorporated into the integration since they are independent on the x- and y-

position.
ON'4 ON, - ON'>2 ON, aN 6N
53505 dx‘lyv_ﬂax 3Hay Hay BV,
aN aN NT
8 dxdyv —ff N dxdyp = 0
A25
ON'2 ON aN 4 8N azv s v d ( )
ay 358y 315, Wy BV,
6N azv
dxa’yv f =0
An appropriate reorganization of the whole equation leads to a more concise formulation.
ﬂaN 4 aN Ced +ﬂaNf ON, -
ax Tl Gy “ay TV
ON, aN oN, ON.
Ty A v [N, dvdyB = 0
ox 3 6 ox 7 ox r
, (A26)
6N26N o+ Nv oN, -
oy 3Hay FdrlaTeg
+ 6N46N Ny geay| v ﬂ TNdd 0
5 35y Hgy T dedy xdyp =
These two equations can be written in a more compact matrix notation in the following way.
KMV + Gp = 0 (A26)
where
kM = [[ B"DBdxay (A27)
G = —[] B¢ N dxdy (A28)
vx]
Vi
vx2
2 _ v,
Vo= (A29)
VXQ
Vg
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ON,, 0 ON , 0 ON 0 ON 0
Ox Ox Ox Ox
- ON ON ON ON
B = 2l 0 2 0 L 0 i (A30)
Oy Oy Oy oy
ON,, ON, ON, ON, ON,; ON, ON, ON,
0y 0x o0y 0x 0y 0x oy O0x
and
B, - oON, ON, ON, ON, ON, ON, ON, ON, (A31)
Ox oy ox oy Ox oy ox Oy

A4. Discretization of equation (A21)

Before the finite element discretization of equation (A21) is carried out, the time derivation of the
left side is approximated with a finite difference approach.

new _ pod ov, ov ov ov
p p x y new X y old
— = -K + + KAt + = A32

But now the Galerkin shape functions are applied, which in this case are the pressure shape
functions. Integration over the element is carried out at the same time.

ﬂ N:p"ewdxdy + KAt(ﬂ N:ﬁa‘;‘rdxdy + HNIT]Z—‘;ydxdy) = f N[T,p"]ddxdy (A33)

To avoid spatial derivation of the pressure shape functions, no integration by parts is carried out at
this state. Instead the physical properties v, v, and p are approximated directly in the same way
described above using equations (A23) and (A24). Again the property vectors are not incorporated
into the integration.

N

a v — T N —UT
Fp dxdyvx—i-ﬂ N,

ON, - T d
3y dxdyV, =H N,N, dxdyp (A34)

| NN dxdy ™ +K At [[ N7

Equation (A34) can be written more compactly with a matrix notation.

MP™ — KALGTS = M p™ (A34)
where
M = [[ NN, dxdy (A35)
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AS. Derivation of the final equation system

Equations (A26) and (A35) together build up a system of three discrete equations.

-l

KM G
p M pold

—KAtGT M

—_—

Note that in the first equation the vector 7 is replaced by p"" which means that the whole

—_—

system becomes implicit. Using the second part of (A36) as an expression for p"" and
substituting this into the first part (A36) leads to a new equation.
M3 + G(p™ + KArM'G™F) = 0 (A37)
After some reorganization one gets the final equation that can be solved with a computer code.
(kM + KAtGM'GT)S = - G p™ (A38)
Using the new expression
KL = KM + KAtGM™'G” (A39)
equation (A38) can be simplified even more.
KLY = — Gp™ (A40)

The solution of equation (A40) results in a velocity field defined by the two components Vv, and

—

Vy .
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A6. Incompressibility with the Uzawa algorithm

As stated in section A2, the whole derivation including the final equation (A40) considers a
compressible medium which does not conserve mass within a single element. This problem can be
solved with a type of the Uzawa iteration algorithm. Therefore the following steps are carried out
within an iteration loop. Let n be the iteration step.

1) The first solution of equation (A40) is carried out with an arbitrary property vector p,, .
Mostly a zero value is chosen.

2) The divergence of the velocity field is calculated with equation (A2) to check how bad
the incompressibility assumption is satisfied. For a perfect incompressible medium the
divergence is zero at every point.

3) A new pressure property vector is calculated using a modified version of equation (A34).
7, =D, + KAtM'G"S (A41)

4) Equation (A40) is solved again by using the new pressure property vector
from step 3) as Py .

5) Repeating steps 2) to 4) decreases the divergence of the velocity field from one iteration
step to another. The iteration loop ends as soon as the divergence reaches a certain
minimum value.

This Uzawa algorithm is performed every time step after the matrices KM, G, M and KL are
assembled. Besides the solution of equation (A40), the velocity field, the pressure field results
from performing the Uzawa iteration loop as well. Setting the minimum value for the divergence
small enough guarantees that the incompressibility assumption is satisfied with a high accuracy.
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To optimize the Uzawa iteration the penalty parameter K in equation (A19) has to be chosen
wisely. To illustrate this figure Al shows two simulations with K = 107"’ and 107", respectively. In
figure 1a) more iteration steps were necessary for the divergence to reach the exit criteria, but at
the same time the error of the solution is much smaller than in b). The geometrical setup for both
cases is the same as described in chapter 2.6.1. The resolution is very small since it does not affect
the accuracy of the matrix division. In order to calculate the error of the matrix division the
solution 7 is set back into equation (A40) and the right-hand side is calculated this way. The error

is given in percent.

a) K=10" b) K=10"

Maximum value of divergence
Maximum value of divergence
5]

1 . 1 1 L 1 14 . |
0 2 4 6 8 10 12 14 0 1 2 3 4
Uzawa iteration step Uzawa iteration step

Fig. Al: Maximum value of the divergence of the velocity field versus the number of iteration steps. The
divergence decreases faster in a) where K = 10" than in b) where K = 107 The error of the matrix division
in a) is always around 10"° and in b) 10
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Numerical integration and the use of local
elements

B1l. Gauss-Legendre quadrature

The final equation (A40) in Appendix A is made up of various terms which contain integrals. For
these integrals no analytical solution exists and they have to be evaluated numerically within the
finite element program. For this purpose the so-called Gauss-Legendre quadrature is applied. This
approach uses a local coordinate system ({, #) and a quadratic reference element with a side length
of 2 and its center in the zero point.

11 nx ny nip

[ remdgdn = 33 fE.n)ww, = 2 f(E,.n)w, (B1)

-1-1 i=1 j=1 n=1

where nx, ny and nip are the number of integration points in x- and y-direction, respectively, and
the total number of integration points per element. ({; , ;) and ({, , #.), respectively are the local
spatial coordinates of the integration points and w;, w; and w,, respectively are the weights.

All terms in equation (A40) are expressed in terms of the global coordinates (x , y) while the

numerical integration with equation (B1) requires a formulation in the local coordinate system.
Therefore two transformations have to be made.
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1)

2)

The local element is the same for every global element and does not change its shape, while
the global system can deform heavily. For this practical reason the shape functions and their
derivatives are defined in terms of local coordinates. To satisfy equation (A30) and (A31) the
spatial derivatives have to be reformulated to global coordinates. The shape functions
themselves do not need to be converted from local to global coordinates since a special iso-
parametric local element is chosen whose geometry is defined by the same shape functions.
The transformation of the spatial derivatives is defined in the following way.

o) Jox av][a)] (o
o0& o0& OE||ox Ox
= = J
o lex avl|e| T e ®2)
on on on||0y oy

where J is the Jacobian matrix. This matrix can be found by differentiating the global
coordinates with respect to the local coordinates. This is also done by multiplying the spatial
derivatives of the shape functions with respect to local coordinates and the global coordinates
of a particular element.

ON, 0N, 0N, oN, ||
X, ¥,
_| o¢ o0& o0& 0g :
J =
an] anZ an3 an9 x3 y3 (B3)
0 0 0 0
n n n n -xg yg-

where x; and y; are the global coordinates of node number 1, etc. Given this, equation, the
derivatives of the shape functions in terms of global coordinates can be found.

0 0
ox _ gt 0&
o7 e (B9
oy on

In equation (A40) the area over which the integration has to be carried out is defined in terms
of global coordinates. However, equation (B1) requires a formulation in the local system. The
use of the determinant of the Jacobian matrix transforms the integration in the following way.

JI £z p)axdy = [ | f(g. n)det|J|dEdn (BS)

-1-1
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Applying all these steps to equation A40 leads to the final summation which is done in the finite
element code within a loop over all integration points of one element. Starting with the derivatives
of the shape functions

ON, ON, ON, ON,
0og 0t o0& T Ot
N =
Ven ON, ON, ON, ON, (BO)
on o0n on 7 0On
one first applies equation (B4) and gets
ON, 0N, 0N, oN,
- ox oO0x oOx T Ox
N=J'V, N =
Ve Ve ON, ON, ON, oN, B7)
oy oy dy T 0y

This expression can now be used for creating the terms in equations (A27) and (A28), which can
be written in a much more general way.

I s (V. N)dxdy = I r V. ,N)dxdy (B8)

Using equation (BS5) converts the integration to the local coordinate system.

[ 77V, Ndxdy = ffJ’lf(VmN)deﬂJldgdn (B9)

-1 -1

Note that the shape functions themselves do not change during this transformation from global to
local coordinates.

Applying the Gauss-Legendre quadrature leads to the desired summation formula.

11 nip

[ [a7 f(V, N)det|lJ|dgdn = 2 07" f(V, N)det|J|w, (B10)

—1-1 n=1

This summation can now be carried out for every element in the spatial domain.
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B2. The Q9/3 element

Figure B1 shows the local reference elements used in the finite element code, which consist of
nine nodes, one at each corner, one in the middle of each side and one in the very middle of the
element. Inside the element there are nine integration points. The element is quadratic with a side
length of 2 and its center lies in the zero point.
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Y S - o %1z 7
g%
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Fig. B1: Local reference element with nine nodes and nine integration points. Black are the nodes with their
local numbers, green the corresponding degrees of freedom (vi and v,) at each node and red the nine
integration points. Note that the center of the element lies in the zero point.
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For this type of element there are nine bi-quadratic shape functions which interpolate the unknown
velocity function. The sum of all nine velocity shape functions is equal to one at every point within
the element. Each function is equal to one at its corresponding node.

N, = €= -n)

N, = SE -+ —n)

N = (€480 +n)

N = €= +n)

Ny = —3 (€= 10 =) (BID
N, = L€+ 8- 1)

N, = —;—(Ez— (0 +n)

Ny = —-(E =87 - 1)

Ny = (&=1n -1

The weights for the numerical integration are defined as follows.

Wi 25
W, 25
ws 25
Wy 1 25
wg) = ={40 (B12)
81
W, 40
w, 40
Wy 40
64
Wy

While the velocity shape functions are continuous over the element boundaries, the set of shape
functions used to interpolate the pressure is discontinuous and linear within an element.

As stated in Appendix A, section A3 the property vector for the pressure contains one pressure
value in the middle of each element and two slopes for the linear spatial dependency. Therefore the
sum of all pressure shape functions is not equal to one, except for the zero point.

Ny=28 (B13)

p3

=
Il
=
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Figure B2 shows a simplified distorted global element-domain. Every element must be mapped to
the local element. If the numerical integration was carried out on the global elements, the
formulation would be different for each element.

YA

Fig. B2: Schematic distorted global elements. Every element has to be mapped to the quadratic and
undistorted local element of Figure BI.
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FLOWCHART OF THE FINITE ELEMENT CODE

APPENDIX C

Flowchart of the finite element code

Appendix C

time loop: for each time increment the global stiffness matrix is built up and equation (A40) is solved with the velocity at every node as the solution
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This appendix summarizes the structure of the finite
element code in a flowchart. Note that in the main

code no visualization is performed since this is the

aim of the postprocessing algorithm.
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Appendix D

Dimensionless formulation

In geological systems the orders of magnitude of different properties are so different (e.g.
timescale vs. strain rate) that the matrices in the finite element code become ill conditioned.
Therefore three characteristic values are defined and all physical properties are normalized using
these characteristic values.

Property Symbol | Unit Used value
Characteristic length scale L. [m] 1
Characteristic time scale tc [s] 1
Characteristic viscosity e [Pa s] 1

Table D1: Characteristic properties used in the finite element code for the normalization of all other
properties

During this study all physical parameters are normalized using the three characteristic values in

table D1. This normalization leads to dimensionless quantities. The physical value for each
quantity can be derived by redoing the normalization. All normalizations are given in table D2.
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DIMENSIONLESS FORMULATION IN THE FINITE ELEMENT CODE

Quantity Symbol Normalization
Length L Lppysical / Le

Time t tonysical / L
Viscosity 7 Uphysical / e
Velocity v Vohysical / Le * L
Displacement u Uphysical / Le
Strain rate € € pysical " le
Strain e no normalization
Rotation rate w W piysicar * Le
Rotation No normalization
Rotation angle 0 No normalization
Stress o Ophysical / Hhe * L
Pressure P Pphysicat / He * L
Incompressibility K Koysicar / e * te

Table D2: Normalization for different quantities in the finite element code. This
dimensionless formulations.
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Appendix E

Strain distribution in single layer folds
with different viscosity contrasts

In chapter 3.4. the finite and incremental strain distribution in a single layer fold with a viscosity
contrast of 100 is analyzed. Appendix E expands this investigation to single layer folds with lower
viscosity contrasts. For this reason three more experiments were performed with exactly the same
geometrical and numerical setup as described in table 2 in chapter 3.4., but with viscosity contrasts
of 10, 25 and 50, respectively. The visualization of these three runs is given in figure El, whereas
every picture is built up of two parts. While on the left-hand side the finite strain ellipses are
colored with the accumulated von Mises equivalent strain, the coloring on the right-hand side is
due to the finite rotation angle. The coloring schemes are the same for all pictures and the
corresponding color-bars are given on every page. In three pictures (viscosity contrast 25, 50%
shortening; viscosity contrast 50, 40% and 50% shortening) the incremental neutral line is
positioned behind the finite strain ellipses as a thick red line. In all other pictures the incremental
neutral line does not exist.

Figure E1 clearly shows that the amplification decreases with decreasing viscosity contrast. While
the layer with viscosity 50 shows a nice amplification history, the layer with viscosity 10 hardly
amplifies, even at 50% shortening. This difference in amplification has a major impact on the
strain distribution and the neutral line. In all cases the rigid body rotation is dominant in the layer
while the accumulated von Mises strain dominates the matrix. But both the accumulated von Mises
equivalent strain and the finite rotation angle due to rigid body rotation differ much less between
the layer and the matrix in the case of viscosity contrast of 10. For a viscosity contrast of 50 both
quantities evolve differently in the layer and in the matrix from early deformation stages onward.
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Not only the difference between layer and matrix, but also the difference within the matrix and
within the layer, change with the viscosity contrast. This is mostly due to the different
amplification of the folds. Since the layer with a viscosity contrast of 10 hardly evolves into a fold,
the matrix surrounding it experiences an almost homogeneous strain rate at the layer boundary. On
the contrary, the strain rate at the boundary between the layer with a viscosity of 50 and the
surrounding matrix is far from homogeneous. The vertical strain rate at this interface is equal to
the sum of the far-field vertical strain rate and the strain rate induced by the growing fold.
Therefore the matrix near the inner arc of the fold is vertically much more extended than the
matrix near the outer arc.

Within the stiff layer it is the finite rotation due to rigid body rotation that varies most notably. In
all cases the rotation at the fold hinges is equal to zero during the whole deformation history.
Because the amplification of the layer with a viscosity contrast of 50 is much higher than in the
case of a viscosity contrast of 10, the variation of the finite rotation angle is also much higher. This
is straightforward since the finite rotation angle for the stiff layers is directly visible from the
geometry itself. Both the incremental and the finite neutral line behave different for different
viscosity contrasts. The small bending in the hinge region of the layer with viscosity 10 causes too
little folding-related extension in the outer arc compared to the far-field compression. Therefore,
the compression dominates the outer arc and no neutral line can develop. In the case of a viscosity
contrast of 25 the incremental neutral line develops between 40% and 50% shortening.

Fig. EI (pages 76 to 79): Growing single layer folds at different stages of external shortening and with
different viscosity contrasts between the layer and the matrix. The finite strain ellipses on the left-hand side
of every picture are colored with the accumulated von Mises equivalent strain while the ones on the right-
hand side are colored with the finite rotation angle. Both color-schemes are the same for all pictures. If an
incremental neutral line exists it is positioned behind the ellipses as a thick red line.
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SINGLE LAYER FOLDS WITH DIFFERENT VISCOSITY CONTRASTS

APPENDIX E

10% shortening
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SINGLE LAYER FOLDS WITH DIFFERENT VISCOSITY CONTRASTS

25% shortening
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40% shortening
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50% shortening
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APPENDIX E SINGLE LAYER FOLDS WITH DIFFERENT VISCOSITY CONTRASTS

The case of a viscosity contrast of 50 is shown in detail in figure E2 with a single beam situated in
the hinge region of the fold. For comparison the same setup is shown in figure 10, chapter 3.4.2.
for a viscosity contrast of 100. Both the incremental and the finite neutral line move slower and
later from outer arc to inner arc for the lower viscosity contrast. For the layer with a viscosity
contrast of 100 the incremental neutral line develops between 10% and 25% shortening and the
finite neutral line between 40% and 50%. On the contrary, the incremental neutral line for a
viscosity contrast of 50 develops between 25% and 40% shortening and the finite neutral line
between 60% and 70%. This clearly shows that the viscosity contrast between the matrix and the
stiff layer has a major impact on the finite and on the incremental strain distribution.
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Fig. E2: Finite (left beams) and incremental strain ellipses in the fold hinge at different stages of shortening
for a single layer fold with a viscosity contrast of 50. For comparison with a viscosity contrast of 100 see
figure 10, chapter 3.4.2.
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