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Abstract

In the first part a finite element code for incompressible linear viscous media is used to investigate
the strain-evolution and distribution in single layer and double layer folds embedded in a weaker
matrix. The concept of finite strain ellipses, which is long-established in the geological community
but rarely applied to numerical models, is used to visualize the finite strain in two-dimensions. The
single layer system shows a clear distinction of the deformation mechanism between the layer and
the surrounding matrix. While the stiff layer is dominated by rigid body rotation without much
shape change, the opposite is true for the matrix. Two different types of neutral lines are to be
distinguished, the incremental and the finite neutral line, the incremental neutral line moves earlier
than the finite neutral line from the outer arc to the inner arc of the fold.

The simulation of double layer folds is compared with a multilayer stack bounded by two much
thicker  layers.  This  comparison  suggests  that  a  double  layer  system is  not  influenced  by  the
presence or absence of a multilayer stack situated in between. The deformation history between the
two thick layers is tripartite with an initial layer-parallel compression without buckling of the thick
layers, a buckling phase with shear deformation between the layers and a final amplifying phase
with flattening normal to the layers between the fold limbs. During the first phase the multilayer
stack between the two thick layers is folded and the superposed thin layers build vertical stacks of
symmetrical  folds. These stacks are almost passively deformed during the second and the third
phase but the folds become asymmetric. The amplitude of such a fold stack at the transition from
the first to the second deformation phase determines, whether it outlasts the flattening of the third
phase or not. Besides the initial perturbation, the number of thin layers effects amplification during
the first deformation phase. A multilayer stack with a high number of layers amplifies faster and
has a higher chance to outlast the flattening phase and to develop asymmetric parasitic folds.

The  finite  element  code and all  visualization  programs used for  this  study are  self-developed,
which was also the main aim of this diploma thesis.
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Chapter 1

Introduction

The investigation of folded rocks from a theoretical point of view has a very long history and many
authors together published an extensive assemblage of literature on this topic. Early works (e.g.
Biot, 1961) simplified the problem of a single layer fold and tried to find analytical solutions for
different aspects of folded layers, for example the growth rate or the dominant wavelength. Even
though the simplifications were significant, the obtained results already were very insightful and
they  remain  fundamental  knowledge  for  the  present-day  studies.  Later  workers  (e.g.  Fletcher,
1977) developed more sophisticated and exact models to describe the same aspects of single layer
folds. With increasing knowledge of the processes involved in folding of rocks the theories were
extended to the more general  and near-natural  case of multilayer folds. Analytical  results  were
searched and found for this scenario (e.g. Smith and Marshall, 1993). In the upcoming computer
simulations different rheologies, geometries and boundary conditions were implemented and it was
possible  to  observe  the  fold  development  dynamically  (e.g.  Williams,  1980).  In  order  to
numerically model multilayer folds, many authors use special constraints that allow resolving only
one layer of a multilayer sequence and repeat this layer (e.g. Casey and Butler, 2004). With such
an approach calculation time is strongly reduced. The increasing available computational power
now allows  a  higher  resolution,  hence  more  accuracy in  the  models.  At  the  same time,  more
complex rheologies and more and more interactive processes are involved in such models. The
increase of resolution makes the modeling of real multilayer systems possible where a whole stack
of  layers  is  resolved  and  no further  constraints  are  necessary  (e.g.  Schmid and Podladchikov,
2005). The increase in complexity also leads to new insights in geometrically relatively simple
systems such as single layer folds (e.g. Schmalholz et al., 2005).
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CHAPTER 1 INTRODUCTION

Compared to analogue models the numerical models have the big advantage that properties within
the models such as stress or pressure can be quantified at every point and for each and every every
time step. This thesis goes in the line of works which use rheologically and geometrically simple
models with a high enough resolution to model a real multilayer stack. In contrast to models where
only one layer  of  a multilayer system is  considered,  this  model  also allows vertical  variations
between the individual layers to occur.

Many numerical models have deficits in the calculation and especially in the visual representation
of the finite strain which accumulates over time. In contrast, the treatment of the incremental strain
causes no big problems. For geologists, however, the finite strain is much more important since it
is observable in the field. A common visualization tool for finite deformation is the concept of the
strain  ellipsoid,  which  is  represented  with  an  ellipse  in  two-dimensions.  Field  geologists  and
analogue modelers use this tool for a long time. Although this concept is well known it is rarely
used in numerical models. Therefore, the calculation of finite strain ellipses is carried out as a first
aim  of  this  thesis.  This  visualization  technique  allows  the  investigation  of  the  finite  strain
distribution of single layer and double layer folds as a second aim.

Once double layer systems are analyzed, multilayer stacks can be added to the system as the third
aim of this thesis. This multilayer stack is situated between two thicker layers of a double layer
system which folds with a different dominant wavelength and a different growth rate. The used
rheology is linear viscous for the stiff layers, as well as for the matrix in between. The model has a
free slip lower surface and an open surface at the top and it is horizontally compressed with a
constant  strain rate. With this relatively simple model asymmetric parasitic folds with a different
wavelength than the thicker layers are produced, which makes the model fully multi scale. The
conclusions from the double layer fold systems can be used to determine under which conditions
parasitic folds develop.

Development  and programming  of the  finite  element code and all  the  visualization routines in
MATLAB® are done by myself. The visualization is kept apart from the finite element code and
both  are  written  as  general  as  possible  for  future  use.  This  is  important  especially  for  the
visualization  routine,  since  it  may  be  used  by  other  researchers  or  for  different  projects.
Development  of  the  own  finite  element  code  and  understanding  of  the  mechanical  equations
behind was the main aim of this diploma thesis.
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Chapter 2

Methods

2.1. Introduction

This chapter summarizes the basic principles and methods used to write the two dimensional finite
element code. A much more detailed description is given in the appendices A, B and C. Since a
standard finite element method is used, many of the techniques used here are also described in
different text books and papers (e.g. Thomasset, 1981, Zienkiewicz and Taylor, 1994 or Hughes et
al., 1979). The computer code itself is written in MATLAB® Version 6.5 by The MathWorks Inc.
and was run on personal  computers.  No special computer setup or super computers were used.
Visualization was also done with MATLAB® graphic tools.

2.2. Finite element formulation of the mechanical equations

The  two-dimensional  displacement  field  of  an  incompressible  linear  viscous  fluid  can  be
calculated by combining the following four sets of equations. Note that compressive stresses are
defined as negative and that gravity is ignored in the first equation.

1) Force balance: BT = 0 (1)

2) Conservation of mass: ∇T⋅v = 0 (2)

3) Rheological relation  = − pm  D ̇ ' (3)

4) Kinematic equation ̇ = B v (4)

where ∇  is the Nabla operator, v  the velocity vector and p the pressure.   and ̇  are vectors
containing the total stress and total strain rate values, respectively. The vector  ̇ '  contains the
deviatoric strain rates.
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CHAPTER 2 METHODS

The first and second entry are the normal components in x- and y-directions, while the third entry
is the shear  component.  The third entry in the strain rate vector is defined as  ̇ xy=2 ̇ xy .  The
matrices B and D  and the vector m  are defined as follows.

B = [∂/∂ x 0
0 ∂/∂ y
∂/∂ y ∂/∂ x]     ,    D = [2 0 0

0 2 0
0 0 ]     ,    m = {110} (5)

where  μ  is  the  viscosity.  With  the  definition  of  deviatoric  strain  rates,  equation  (3)  can  be
reformulated. Thereby formulation of equation (3) does not change, only the definition of matrix
D  has to be adjusted to D.

D = [
4/3 −2/3 0
−2/3

4/3 0
0 0 ] (6)

Combination  of  equations  (1)  to  (4)  leads  to  the  governing  equations  that  describe  the
incompressible Newtonian flow with a mixed formulation.

BT D B v − ∇ p = 0 (7)

∇T⋅v = 0 (2)

Note that equation (7) is a set of two equations making equations (7) and (2) together a set of three
equations  for  the  three  unknowns  vx,  vy and  p.  Incompressibility implied in equation (2)  holds
major problems for solving the system and especially for generating an accurate pressure field.
These  problems  are  well  summarized  in  Pelletier  et  al.,  1989.  Therefore,  a  compressible
formulation has to be chosen while the Uzawa iteration will approximate the incompressibility.
The more general compressible formulation of equations (2) is:

∂ p
∂ t
= −K ∇T⋅v  (8)

where K is the incompressibility.

The  formulation  of equation  (8)  is  often  referred  to  as  the  penalty  approach  with  the  penalty
parameter  K (see e.g.  Hughes, 2000, Chapter 4). This penalty parameter essentially is the elastic
incompressibility  parameter,  which  is  to  be  chosen  a  big  number  for  an  incompressible
formulation.
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CHAPTER 2 METHODS

With the compressible formulation and the penalty approach the resulting governing equations are:

BT D B v − ∇ p = 0 (9)
∂ p
∂ t
= −K ∇T⋅v  (10)

Before the spatial  derivatives are considered, the time derivative in equation (10) is  discretized
with a finite difference approach.

pnew  K t ∇T⋅v = pold (11)

where  Δt is  a  small  time increment,  and  pold and  pnew is  the pressure  before and after  the time
increment. Discretization of equations (9) and (11) is carried out with a finite element method by
approximating the  velocity  and the pressure  within  an element  with  their  corresponding shape
functions  Nv and  Np,  respectively.  Integration  over  the  whole  element  is  performed  after  the
Galerkin weighting functions (same functions as the shape functions) are applied to the equations.
Integrating by parts reduces the system to a set of equations containing only first order derivatives
which is often referred to as the weak formulation. This system has the following popular form
(see e.g. Hughes, 2000, Equation 4.3.21 or Zienkiewicz and Taylor, 1994, Equation 12.18)

[ KM G
−K t GT M ]{ vpnew} = { 0

Mpold} (12)

In this mixed formulation,  G is the discrete gradient operator and  GT is the discrete divergence
operator. v  is the velocity vector containing all velocity components of all nodes of the element.
The following definitions apply in equation (12).

KM = ∬ BT D B dx dy    ,   G = −∬ BG
T N p dx dy    ,   M = ∬N p

T N p dx dy (13)

where  B  and  BG  are  suitable  organized  matrices  containing  the  spatial  derivatives  of  the
velocity shape functions.

The three equations (12) can be collapsed into two equations eliminating one degree of freedom,
pnew  out of the system.

KLv = − Gpold (14)

The lost degree of freedom,pnew  will be calculated later in the Uzawa iteration loop.
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CHAPTER 2 METHODS

pold  must be predefined before solving the equation while the new matrix KL is defined as

KL = KM  K t G M−1 GT (15)

2.3. The use of the Uzawa iteration algorithm

Equations (9) and (11) are compressible formulations. To achieve incompressibility Pelletier et al.,
1989 recommend the Uzawa iteration algorithm below as one of the best possibilities.

1) Choose pold  as an arbitrary initial pressure. Very convenient is a zero value.
2) Let n be the iteration number. Derive v  with equation (14) for n≥1.
3) Calculate pnew  with equation (12) and use it as pold  in the next iteration step.
4) Repeat step 2) and 3) until the divergence of the velocity field

(equation (2)) is small enough (smaller than a certain exit criteria).

Besides the velocity field, the pressure field is a result of the Uzawa iteration. This pressure field
was eliminated out of the governing equation before and is now regained. The penalty parameter K
in equation (8) has to be chosen wisely in order to optimize the Uzawa algorithm. Though a high
number reduces the iteration steps for the divergence to reach the exit criteria, it also reduces the
accuracy of the matrix division necessary to solve equation (14).

2.4. Numerical integration on the Q9/3 element

In this study the so called Q9/3 elements are used, which are quadrilateral and built up of nine
nodes for  the velocity degrees of  freedom, three for  the pressure degrees of  freedom and nine
integration  points.  The  corresponding  shape  functions  for  the  velocity  are  bi-quadratic  and
continuous  over  the  element  boundaries.  Shape  functions  for  the  pressure  are  bi-linear  and
discontinuous. This type of element is iso-parametric and is generally considered as one of the best
elements for fluid flow problems (e.g. Hughes, 2000). The choice of discontinuous pressure shape
functions allows calculating accurate pressure fields although the pressure is eliminated out of the
equation system, which is actually solved. The numerical integration on this element is carried out
using the Gauss-Legendre quadrature with its fundamental formula

∫
−1

1

∫
−1

1

f  ,d d  ≃ ∑
i=1

nx

∑
j=1

ny

f i , jwi w j = ∑
n=1

nip

f n ,nwn (16)

where f(ξ,η) is an arbitrary function in the local coordinate system (ξ , η), nip = nx · ny is the total
number  of  integration  points  within  one  element  and  wn =  wi · wj is  the  weight  of  the  n-th
integration point.
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In  order  to  apply  this  formula,  equations  (13)  have  to  be  transformed  from  global  to  local
coordinates using the determinant of the Jacobian.

Before doing this, the shape function derivatives which, for practical reasons, are defined in local
coordinates have to be transformed to global coordinates using the Jacobian matrix. This needs to
be done because equation (13) is given in terms of global coordinates. These coordinate-mapping
steps, as well as the summation over all integration points in equation (16), is performed for every
element within a loop over the integration points.

2.5. Normalization and boundary conditions

To avoid ill-conditioned matrices in the finite element code, all physical parameters are normalized
using  the  characteristic  value  of  one  for  the  three  fundamental  quantities  distance,  time  and
viscosity, respectively. This normalization leads to a dimensionless formulation. To get physical
values, the normalization has to be removed. It is described in further detail in Appendix D.

The boundary conditions used for the experiments  on single layer, double layer and multilayer
systems are given in table 1. Using these boundary conditions, it is possible to model only one half
of a wavelength and mirror it to get a full wavelength (figure 1). Further conditions like the time
increment,  the initial  perturbation  of the layers  or the resolution is  given in the corresponding
chapters.

Boundary Boundary condition Values specified at the boundary
Top Free surface Nothing

Bottom Free slip vy = 0

Left Free slip vx = 0

Right Constant strain rate vx = x · ̇ x , whereas ̇ x  = 1

Table 1: Boundary conditions used in the experiments on single layer, double layer and multilayer systems.

Fig.  1: The  modeled  area  of  a  fold  is
restricted to  a  half  wavelength  and  the
matrix  above  and  below  this  half
wavelength.
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CHAPTER 2 METHODS

2.6. Benchmarks

Before  using the  finite  element  code to  model  folds,  it  was tested  with  two different  types  of
benchmarks. The general idea of these benchmarks is to approximate an analytical solution with
the computer code and to see whether the numerical solution converges towards the analytical with
increasing  resolution.  In  both  tests  the  exit  criteria  for  the  velocity  divergence  in  the  Uzawa
algorithm is set to 10-12 and the time increment to 10-8.

2.6.1. Single layer fold growth rate

Fletcher, 1977 provides the following exact solution for the growth rate  q of a single layer fold
with higher viscosity than the surrounding media. The rheology used in his paper is linear viscous
for all materials and therefore is the same as that in this study.

qanalytick ; R = −21−R

1−R2 − 1
2 k
1R2 ek − 1−R2 e−k  (17)

where  k =  2πH/L is  the wave number with  H as  the layer  thickness,  L as  the wavelength and
R=μmatrix / μlayer as the viscosity contrast between the surrounding matrix and the layer.

The growth rate defines how fast a fold amplifies according to the amplification law (Biot, 1961):

At  = A0 e1q t  (18)

The analytical fold growth rate qanalytical is evaluated for a wavelength to thickness ratio L/H of 16.5
and a viscosity contrast  R of  10-2. For the same values, three time steps are performed with the
finite element code. The initial amplitude to thickness ratio of the layer A0/H is set to 10-4. The fold
growth rate is calculated according to:

qnumeric =
1
dt

log10 A3

A2 − 1 (19)

where dt is the time increment and A3 and A2 are the amplitudes after 3 and 2 time steps.

In figure  2 the error between the analytical and the numerical fold growth rate clearly decreases
with increasing resolution in the finite element code. Figure  3 shows the converging numerical
results for the fold growth rate with increasing resolution.
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2.6.2. Pressure field around a rigid inclusion

Schmid, 2005 provides a fully two dimensional analytical solution for the pressure p at any point
around  a  rigid  inclusion  surrounded  by  a  linear  viscous  media  compressed  in  pure  shear
conditions.

p = −4̇ℜ22 me−2 i − 2e2 i
1−m23 m4−1  (20)

where  μ is the viscosity of the matrix around the inclusion and  ̇  the far-field pure shear strain
rate.  ℜ  denotes the real part  of the expression in brackets.  ξ is the complex coordinate in the
image  plane  which  is  mapped  to  the  physical  plane.  The  variable  m for  a  perfectly  circular
inclusion is equal to zero and φ defines the inclination of the inclusion with respect to the far-field
flow which is indistinguishable for the case of a circular object. For further details see  Schmid,
2005.

In the  finite  element  program the  pressure  is  one of  the  outputs  of  the  Uzawa iteration  loop
described in chapter 2.3. This numerically calculated pressure field is compared with the analytical
solution at every integration point after one time step. The far-field pure shear  strain rate ̇  is
equal to 0.5 and the viscosity in the surrounding matrix is 100 (dimensionless).

9

Fig.  2:  Double logarithmic plot of the error of
the numerical  fold  growth rate with respect  to
the analytical solution by  Fletcher, 1977 vs. the
total number of nodes used in the finite element
code. The numerical solution clearly converges
towards the analytical  solution with increasing
resolution.  Geometrical  and  numerical  details
are described in the text.

Fig.  3: Zoom to the growth rate vs. wavelength
curve (inlay) at a wavelength to thickness ratio
of  16.5.  The  blue  dots  (numerically  calculated
growth  rate)  converge  towards  the  analytical
growth rate (red line) with increasing resolution
of the finite element code.
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In figure 4 the error averaged over the whole numerical domain is plotted versus the resolution of
the finite element code. It is obvious that the error decreases with increasing resolution. Figure 5
shows the difference between the numerical and the analytical pressure field calculated with the
highest resolution of figure 4 which is 50904 nodes, whereas some of them lie outside the plotted
domain.

Both benchmarks, fold growth rate  and pressure  field around a rigid inclusion,  clearly show a
convergence of the numerical  towards  the  analytical  solution with increasing resolution  of the
numerical  simulation.  In both cases this  converging trend is  continuous.  This  demonstrates the
accuracy of the finite element code used in this study.
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Fig. 4: Double logarithmic plot of the averaged
error of the numerical pressure field with respect
to the analytical solution by Schmid, 2005 vs. the
total number of nodes used in the finite element
code. The numerical solution clearly converges
towards the analytical  solution with increasing
resolution. The spatial distribution of the error
at the highest resolution is presented in figure 5.

Fig.  5: Spatial  distribution of  the error  of  the
numerical  pressure  field  with  respect  to  the
analytical  around  a  perfectly  circular  rigid
inclusion. In the directions of the far-field strain
axes and at the very boundary of the inclusion
the  error  reaches  the  highest  values.  50904
nodes are used for the numerical solution.



Chapter 3

Finite strain-evolution and visualization
in single and double layer systems

3.1. Introduction

In nearly all papers or text books on structural geology the two-dimensional finite strain in rocks is
described by an ellipse (e.g. Ramsay and Huber, 1989). It is assumed that before the deformation,
this ellipse was a circle that deformed passively. Although this concept is long-established, most
authors still draw strain ellipses by hand and do not calculate them. This chapter now presents a
new visualization technique that calculates the finite strain ellipse at any point in the material.

3.2. Exact finite strain ellipse

For every time step the incremental velocity gradient tensor can be calculated at any integration
point according to

∂ vi

∂ x j
∣integration point = B velgrad

v (21)

where  B velgrad  is  a  suitable  organized matrix  containing the spatial  derivatives  of  the  velocity
shape functions at the integration point.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

Assuming homogeneous strain around the integration point  the  velocity gradient  tensor  can be
used to calculate the coordinates of an arbitrary point  P after the deformation increment  (x',y'),
knowing  the  coordinates  before  the  deformation  (x,y).  The  interlinking  tensor  is  called  the
incremental deformation gradient tensor DGi.

{x '
y '}P = ij  t

∂ vi

∂ x j 
DG i

{xy}P = ij 
∂ui

∂ x j 
DG i

{xy}P (22)

where  ux and  uy are the incremental displacement components in x- and y-direction, respectively
and δij is the Kronecker delta. After a second deformation increment the coordinates of the same
point P are

{x ' '
y ' '}P = DG i2{x '

y '}P = DG i2 DG i1{xy}P (23)

This  way the  coordinates  of  the  point  P after  any  number  of  deformation  increments  can  be
directly  calculated,  provided  that  initial  coordinates  are  known.  The  multiplication  of  all
incremental deformation gradient tensors leads to the finite deformation gradient tensor DGf. Point
P may be an arbitrary  point  on a  circle  around the  integration  point.  Assuming homogeneous
deformation  around  the  integration  point  during  all  deformation  steps,  the  coordinates  of  this
passively deformed circle can also be calculated directly. This process is illustrated in figure 6.

 a) step by step

{xy} →  DGi1  → {x '
y '} →  DGi2  → {x ' '

y ' '} →  DGi3 ... DGin  → {xn

yn}
→ → → ... →

 b) direct

{xy} → DGf → {xn

yn}
→

Fig.  6: a) Progressive  deformation  of  a  strain  ellipse  which  initially  was  a  circle.  To  calculate  the
coordinates of the ellipse after any deformation increment equation (22) is applied to the coordinates of the
ellipse  before  the  increment.  b) Direct  calculation  of  the  coordinates  of  the  finite  strain  ellipse  using
equation (23). The finite deformation gradient tensor DGf has to be calculated stepwise beforehand.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

The  finite  deformation  gradient  tensor  is  calculated  for  every  integration  point  within  the
numerical  domain  and is  updated  during every time step.  It  can  be averaged  over  an area  or
interpolated to every point,  like every other quantity. Therefore the finite strain ellipses can be
drawn everywhere and in every size using a size factor. However, in general, a strain ellipse with a
finite  size  always  overlaps  an  area  which  has  been  heterogeneously  deformed  and  it  only
represents  the  stepwise  homogeneous strain  at  its  very center.  Making the  finite  strain  ellipse
bigger only means making it visible.

3.3. Coloring of the finite strain ellipse

In natural deformation processes, it is possible that a circle is compressed before being extended in
the  same  direction.  The  resulting  finite  strain  ellipse  is  again  a  circle  and  the  experienced
deformation  is  invisible.  The  same  happens  if  deformation  consists  of  rotation  only.  Two
possibilities  are  presented  here  to  avoid  this  problem and  to  distinguish  between  undeformed
circles and deformed circular finite strain ellipses.

The incremental displacement gradient tensor can be split into two parts,  the incremental strain
tensor ε and the incremental rotation tensor ω.

∂ui

∂ x j
= 1

2 ∂ui

∂ x j

∂u j

∂ xi 


 1
2  ∂ui

∂ x j
−
∂u j

∂ xi 


(24)

The incremental strain tensor ε is symmetric and the incremental rotation tensor ω antisymmetric.
These two tensors can be used to define two scalar quantities:

incremental von Mises equivalent strain: eqv =  2
3 xx

2 yy
2 2xy

2  (25)

incremental rotation angle:  = arctan yx (26)

The sense of rotation is defined positive counterclockwise. Therefore ωyx is used in equation (26)
instead of ωxy. The von Mises equivalent strain is a measure for the change of shape and is always
positive. Both quantities are scalar and can be summed up over all deformation steps, leading to a
value for the shape change history and the total rotation angle, respectively. The summation of the
absolute  values of  the  incremental  rotation angle leads  to a value for  the  rotation history.  The
described values can be used to color the finite strain ellipses.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

3.4. Finite strain in single layer folds

The geometrical and numerical setup for the experiments described in this section are summarized
in table 2. Normalization rules are given in chapter 2.5.

Setup for experiments on single layer folds
Viscosity of the layer μl = 100

Viscosity of the matrix μm = 1

Initial layer thickness H0 = 5

Type of initial perturbation Half cosine. Same perturbation for upper and lower interface of layer

Amplitude of initial perturbation
A0

H 0
= 1

100

Initial thickness of matrix above
and below layer

Hm0 = 15

Width of domain Lx = 40 (half wavelength for a viscosity contrast of 100)

Time increment Δt = 10-3

Horizontal resolution 301 nodes

Vertical resolution over layer 31 nodes

Vertical resolution over matrix 31 nodes

Total vertical

91 nodes

Total resolution

27391 nodes

Table 2: Fundamental definitions for the experiments on single layer folds.

3.4.1. Finite strain-evolution during progressive folding

With  the  new visualization  technique  one  may readily  observe  the  strain-evolution  in  a  fold
(figures  7a-h).  The  color  of  the  finite  strain  ellipses  depends  on  the  accumulated  von  Mises
equivalent  strain  Σεeqv in the upper pictures and the finite rotation angle  Σα in the lower ones,
respectively. The reference colors are given in the two  color-bars on every page. Note that only
one half  of  the  pictures  is  calculated  and  then  mirrored  to  get  a  better  view of  the  situation.
Therefore the finite rotation angles on the left-hand side of the pictures  7b, d, f and h have the
wrong sense of rotation. After 10% shortening (figures  7a and b) almost no buckling occurred.
Only a very slight undulation of the layer is visible. The strain ellipses show a vertical major strain
axis  over  the  whole  domain  due  to  the  far-field  shortening.  No  visible  difference  between
individual strain ellipses, neither in shape nor in color, expresses homogeneous strain.The layer
and the matrix are indistinguishable in terms of strain and rotation. After 25% shortening (figures
7c and d) the buckling process started. The fold limbs are rotated and so is the near-layer matrix,
but with opposite sense. While rotation in the fold limbs is due to rigid body rotation (greenish
color in figure 7d), rotation in the matrix is due to shearing (red to orange color in figure 7d). This
tendency is even stronger after 40% shortening (figures 7e and f).
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

While rigid body rotation is dominant in the stiff layer, strain is dominant in the matrix (darker
blue colors in the stiff layer, yellow to green in the matrix in figure 7e). Besides the region near the
outer arc of the fold, the matrix is more distorted than the layer and therefore has more elongated
strain ellipses. Near the outer arc, the push of the growing fold and the overall compression are
opposed, though far-field compression is stronger (vertical major strain axes). Near the inner arc,
the pull  of the growing fold and far-field compression work together  and the ellipses are more
elongated. At 50% shortening (figures  7g and h) fold limbs are not much distorted but strongly
rotated. The opposite takes place in the matrix near the fold limbs. The strain ellipses are heavily
distorted (dark red in figure  7g) but rotated only by a few degrees. The strong rotation of these
ellipses is almost entirely due to high shear stain. Generally, the accumulated strain from the first
10% of shortening does not change much during further deformation. In the matrix it is the rigid
body rotation that little changes.

To get a better understanding of the evolution of the finite strain in figure 7 it is also possible to
pick single vertical beams out of the simulation. This is done in figure 8 with two vertical beams
within the stiff layer, one in the hinge zone and one on the fold limb. The beams are chosen in a
way that their subdivisions are quadratic at the initial stage. While the beam at the hinge does not
rotate,  the one on the fold limb obviously rotates with increasing shortening. The accumulated
strain shows a different pattern. In the limb, the beam rotates with increasing shortening but finite
strain is about the same over the whole beam. In the first 25% of shortening the accumulated strain
changes much more than from 25% to 50%. On the contrary the accumulated strain in the hinge-
beam varies  strongly from top to bottom. There  the  bending of the  layer  influences  the  strain
distribution.

Fig. 7 (pages 16 to 19): Growing single layer fold with a viscosity contrast of 100 at different stages of far-
field shortening. Strain  ellipses in the upper pictures are colored with von Mises equivalent  strain.  The
corresponding color-bars are given on every page. The ones at the bottom are colored with finite rotation
angle.  a)  and  b)  10% shortening,  c) and  d)  25% shortening,  e)  and  f)  40% shortening,  g  and  h)  50%
shortening. For more information see text.
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10% shortening
figure 7a)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 7b)
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25% shortening
figure 7c)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 7d)
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40% shortening
figure 7e)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 7f)
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50% shortening
figure 7g)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 7h)
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

Fig. 8: Strain-evolution of a single vertical beam in the hinge zone and on the fold limb, respectively. The
beams are indicated in the lower most big scale figures. The strain ellipses in the upper most figures are
colored with the accumulated von Mises strain, while the ellipses in the figures in the middle are colored
with the finite rotation angle. 

3.4.2. Finite and incremental strain distribution, the neutral line

Many authors working on folds (e.g. Ramsay and Huber, 1989) propose the existence of a neutral
line  along  which  there  is  zero  strain  between  domains  of  layer-parallel  shortening  and  layer-
parallel extension in the stiff layer. Figure 9 shows that a strict difference has to be made between
the finite neutral line and the incremental neutral line. The initial layer-parallel shortening in the
hinge region leads to strongly elongated ellipses before buckling starts (figure 8 at 10%). As soon
as the fold begins growing, bending of the hinge leads to incremental extension in the outer arc and
to incremental compression in the inner arc. In the inner arc this additional compression intensifies
the far-field compression and the ellipses become even more elongated. In the outer arc, however,
bending-related extension weakens the far-field compression and the finite strain ellipses return to
circular  or even to horizontally elongated shapes.  The transition from horizontally to vertically
elongated ellipses  is referred to as the finite neutral  line,  whereas the transition from bending-
related,  incremental,  layer-parallel  extension  to  compression  is  referred  to  as  the  incremental
neutral line.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

a)                                                25% shortening

b) 40% shortening d)                  60% shortening

         c) 50% shortening         e)           70% shortening

Fig. 9: Fold shapes of a single layer fold with a viscosity contrast of 100 at different stages of shortening.
The finite strain ellipses are drawn over the whole domain even though they are hardly recognizable in the
matrix  at  higher stages.  The incremental neutral  line is drawn in red as the zero-contour  of  the layer-
parallel strain rate. The finite neutral line has to be imagined between layer-parallel elongated finite strain
ellipses and the ones elongated normal to the layer. A more detailed view of the hinge region is given in
figure 10.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

Since the finite rotation angle is known at every integration point according to equation (26) the
strain rate tensor in the (x,y)-coordinate system can be transformed into a (x',y')-coordinate system
with x parallel and y orthogonal to the layer. The incremental neutral line in figure 9 (red line) is
then calculated as the zero-contour of this layer-parallel strain rate. The finite strain ellipses are
drawn to visualize the position of the finite neutral line. Figure  10 shows a detailed view of the
hinge region with a single beam, but with ten strain ellipses instead of four. The beam is indicated
in red in the lower pictures. At each deformation stage the finite strain ellipses are shown in the
left  beam, the incremental strain ellipses in the right beam. Since the shape of the beam is the
result of the finite deformation, the incremental strain ellipses do not fit into the subdivisions of
the beam. The incremental neutral line is indicated in red as in figure 9. The finite neutral line in
blue is placed between the strain ellipses by hand.

Both  neutral  lines  move  through  the  fold  from  outer  to  inner  arc.  The  initial  layer-parallel
shortening elongates the finite strain ellipses vertically. Because in the outer arc this shape first has
to go back to circular, the finite neutral line moves much later than the incremental neutral line
through  the  fold.  This  indicates  that  layer-parallel  shortening,  during  the  early  history  of
deformation, has a high influence on the distribution of the finite strain.

In figure 9 the zero-contour of the layer-parallel strain rate and the finite strain ellipses are drawn
both in the layer and in the matrix. The discussion above only considers the situation within the
stiff  layer.  Since  the  strain  ellipses  in  the  matrix  are  hardly recognizable  for  higher  stages  of
shortening, they are not considered extensively. The same applies for the zero-contour drawn in
the matrix, since it makes no sense to speak of a layer-parallel strain rate in this matrix.

Fig. 10: Finite (left beams) and incremental strain ellipses at the fold hinge at different stages of shortening
for a single layer fold with a viscosity contrast of 100. The incremental neutral line (red) moves much earlier
through the fold than the finite neutral line (blue).
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During this study the investigation of single layer folds also involved experiments on exactly the
same geometries as  described above but  with different  viscosity contrasts.  The results  of  these
experiments are presented in appendix E. The conclusion is that with decreasing viscosity contrast
both  the  incremental  and  the  finite  neutral  line  move  later  and  slower  through  the  fold,
respectively. This means that the layer-parallel shortening during early deformation has a higher
influence on the distribution of finite strain if the viscosity contrast is low. In other words, layers
with a low viscosity contrast amplify slower and later and the ratio of layer-parallel shortening to
amplification is higher. In addition, the difference in both the accumulated von Mises equivalent
strain and the finite rotation angle between the layer and the matrix decreases with decreasing
viscosity contrast.  The fold limbs rotate  less but  deform more and therefore become more and
more similar to the matrix. This is straightforward since there is no difference between layer and
matrix for a viscosity contrast of one.

3.5. Finite strain in double layer folds

The  multilayer  systems simulated  in  chapter  4 are  always  situated  between  two much thicker
layers but with the same viscosity as the stiff layers (μ = 100) of the multilayer system. Therefore,
the strain distribution and deformation history of a simple double layer system is investigated prior
to the real multilayer system. These simulations pay special attention to the matrix between the
two stiff layers. The geometrical and numerical setup used is given in table 3.

Setup for experiments on double layer folds
Viscosity of both layers μl = 100

Viscosity of the matrix μm = 1

Initial layer thickness of both stiff layers H0 = 5

Type of initial perturbation for both stiff layers
Half cosine. Same perturbation for upper
and lower interface of both layers.

Amplitude of initial perturbation
A0

H 0
= 1

100
 for both layers

Initial thickness of matrix above
and below layer

Houter 0 = 15

Initial thickness of matrix between layers Hinner 0 = 5 (equal to thickness of thick layers)

Width of domain
Lx = 40 (half wavelength for a single layer
for a viscosity contrast of 100)

Time increment Δt = 10-3

Horizontal resolution 301 nodes

Vertical resolution over layers 31 nodes

Vertical resolution over matrix 31 nodes

Total vertical

151 nodes

Total resolution

45451 nodes

Table 3: Fundamental definitions for the experiments on double layer folds.
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CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

3.5.1. Three phases of progressive deformation

For a first investigation concerning double layer systems, the matrix thickness between the two
stiff layers is chosen equal to the layer thickness. The geometries at different stages in the folding
history of such a system are shown in figure 11 together with the finite strain ellipses colored with
the  accumulated  von  Mises  equivalent  strain  (upper  pictures)  and  the  finite  rotation  angle,
respectively. As in figure 7, only the right half of each picture is calculated and then mirrored to
have a whole wavelength to study. Therefore, the finite rotation angles in the left halves of the
lower pictures indicate the wrong sense of rotation. The two color-bars on every page give the
color scheme for each picture.

After 10% shortening (figure 11a and b) only a very slight bending of the two layers is noticeable.
Buckling is  not  initiated  and no difference between  the  matrix  between the  layers,  the  matrix
surrounding it and the layers themselves is visible in terms of finite rotation angle and accumulated
strain. The situation is roughly the same as in figures 7a and b. The orientations of the finite strain
axes is vertical and constant over the whole domain.

After 20% shortening (figures 11c and d) the buckling process is initiated and the fold limbs of the
two stiff layers start to rotate (light blue in figure 11d) and the finite strain ellipses in the matrix
between the two stiff layers start to rotate in the opposite direction. In terms of accumulated strain
there is still no big difference between the stiff layers and the matrix in between. But note that the
color scheme extends to much higher values for both the accumulated strain and the finite rotation
angle than in figure 7. Therefore the differences are more difficult to distinguish. In addition, the
orientations of the finite strain ellipses in the surrounding matrix near the outer arc of the fold is
different for the anticline and the  syncline. This is due to different conditions at the upper and
lower boundaries. While the upper boundary is a free surface the lower has a free slip condition
which essentially  means that  it  has a zero vertical  velocity.  The  matrix  above the  anticline  is
pushed upwards from the growing fold and can move away because the boundary is deformable.
The  matrix  below the  syncline  is  pushed  downwards  but  is  blocked  by  the  lower  boundary.
Therefore the matrix experiences a strong vertical compression and the finite strain ellipses rotate
to be horizontally elongated. If the matrix surrounding the fold was the main subject of this chapter
the boundaries would have to be much further away from the fold. But since the attention lays on
the matrix between the two stiff layers this phenomenon is ignored.
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At 30% shortening (figures 11e and f) the phenomena described above are more developed and the
matrix between the layers clearly differs from the layers. The accumulated strain reaches much
higher values than in the surrounding matrix and the absolute value of the finite rotation angle
already reaches about the same values as in the fold limbs of the stiff layers, although the sense of
rotation  is  different  (orange  color  in  the  matrix,  blue  in  the  layers  in  figure  11f).  Both  the
accumulated von Mises strain and the finite rotation due to rigid body rotation do not reach the
highest values in the middle of the matrix at the inflexion point as one could expect, but between
the inflexion point and the fold hinge right at the boundary to the convex curved stiff layer. The
thickness  of  the  matrix  between  the  two  stiff  layers  changes  from  hinge  to  inflexion  point.
Measured orthogonal to the layer boundary, the hinge becomes thicker and the limbs thinner. At
the same time, the two stiff layers tend to form parallel folds (the orthogonal layer thickness is
constant over the whole wavelength).

After  40%  shortening  (figures  11g  and  h)  the  highest  values  of  the  accumulated  von  Mises
equivalent strain and the finite rotation angle are reached for this deformation sequence and all the
phenomena described above are fully developed and clearly visible. It is now obvious that the stiff
layer at the inner  arc is bent more than at  the outer arc. The matrix between the two layers is
strongly rotated (red colors in figure 11h) and deformed (red colors in figure 11g). The existence
of a strong rotation and a strong shape-change at the same time indicates that the main part of the
deformation is a layer-parallel shear deformation. This deformation type contains both properties.
A second part of the deformation is the flattening of the matrix normal to the layer surfaces which
squeezes the matrix from the limbs towards the hinges.

Fig. 11 (pages 26 to 29): Growing double layer fold with a viscosity contrast of 100 at different stages of
far-field shortening. Strain ellipses in the upper pictures are colored with von Mises equivalent strain. The
ones at the bottom are colored with finite rotation angle. The corresponding color-bars are given on every
page.  a)  and b) 10% shortening,  c) and d) 20% shortening,  e) and  f)  30% shortening,  g)  and h)  40%
shortening. For more information see text.
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10% shortening figure 11a)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 11b)
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20% shortening figure 11c)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 11d)

27



CHAPTER 3 FINITE STRAIN-EVOLUTION AND VISUALIZATION

30% shortening figure 11e)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 11f)
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40% shortening figure 11g)

Color-bar for accumulated von Mises
equivalent strain Σεeqv

Color-bar for finite rotation angle
in degrees Σα

figure 11h)
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The deformation history of the matrix between the two stiff layers near the inflexion point can be
summarized in three phases:

1) The neighboring stiff layers have not started to buckle and the dominant deformation in the
whole  system  is  a  layer-parallel  compression.  The  matrix  in  the  middle  is  nearly
indistinguishable from the layers in terms of accumulated strain and finite rotation.

2) The stiff layers start to buckle and a layer-parallel shear deformation is active in the matrix in-
between. This leads to a strong shape-change and rigid body rotation, stronger than in the stiff
layers or in the surrounding matrix.

3) Strong buckling and closure of the two folded stiff layers leads to a compression normal to the
layer surfaces. The matrix is squeezed out of the limb region towards the hinge. 

The three phases are not strictly separated. Layer-parallel shear, for instance, is still prominent in
phase 3. However, these three deformation phases in the matrix between two stiff layers have a
major impact on the development of multilayered parasitic folds described in chapter 4.

Further insights into the deformation history of a double layer fold system are provided in figure
12. Nine originally vertical beams are passively deformed with the growing folds and plotted with
the corresponding finite strain ellipses. The beams are initiated in a way that their subdivisions are
quadratic at the initial stage. In the sequence of figure 12 the three deformation phases described
above are clearly observable. After 10% shortening (figure 12b) the matrix between the two layers
is  almost  only compressed horizontally and hardly any shear  deformation occurred.  After  25%
(figure  12c) shearing is stronger near  the convex interface and strongest  between the inflexion
point and the hinge. This is clear in the middle beam of the matrix which deforms asymmetrically
with  a  very  strong deformation  near  the  convex interface  and  a  weaker  deformation  near  the
concave interface. The beam at the inflexion point of the matrix, however, deforms symmetrically.
The shearing of the beam as a whole is  about  the same as in the  middle beam but  it  is  more
uniformly distributed and contains no such maxima as in the middle beam. This  effect  is  even
stronger after 40% and 50% shortening (figures 12d and e). The middle beam develops a tail-shape
with a very strong deformed tail at the convex interface. This tail extends between the two stiff
layers into the zone influenced by the compression normal to the layers, which developed late in
the deformation sequence because of the strong amplification of the stiff layers. Therefore, the tail
of  the  middle  beam is  not  only  sheared  but  also  compressed,  which  intensifies  the  strongly
elongated shape of the finite strain ellipses. The same shearing-flattening-combination takes place
in the center of the beam at the inflexion point, while the two ends lie outside this zone of very
strong deformation. As a consequence the beam at the inflexion point develops a S-shape. Both the
tail-shape  of  the  middle  beam  and  the  S-shape  of  the  beam  at  the  inflexion  point  are  also
recognizable from the arrangement of the finite strain ellipses in figure 11.
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a)

b)

c)

d)

e)

Fig. 12: Finite strain-evolution in a double layer fold with a viscosity contrast of 100 and a layer spacing
equal to the layer thickness. Illustrated are nine beams, six in the stiff  layers and three in the matrix in
between. The arrangement of the nine beams is the same as in the big scale figures on the left side of each
deformation stage.
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3.5.2. Three regions of deformation in the matrix between the stiff layers

In chapter 3.5.1. it is foreshadowed that the three phases of progressive deformation do not apply
in the whole matrix between the two stiff layers and that this matrix has to be divided into different
regions.  These  different  regions  undergo different  paths  of  progressive  deformation.  The three
described phases of chapter 3.5.1. apply only in the region near the inflexion point.

The three deformation regions are:

1) Near  the  inflexion  point.  This  region  is  characterized  by  the  three  phases  of  progressive
deformation described in chapter  3.5.1. Layer-parallel shortening is followed by shearing and
some flattening normal to the layer.

2) Near the fold hinge of the matrix. This region is characterized by layer-parallel compression
during the whole deformation history, which can be approximated with a pure shear regime.

3) A transition zone between regions 1 and 2. The two different deformation paths of regions 1
and 2 overlap and a complicated deformation mechanism characterizes this region. Shearing
and flattening are less distinct compared to region 1 but strong enough so that a pure shear
approximation is inappropriate.

These three regions are difficult to distinguish but nevertheless this is tried in figures 13 to 15. In
figure  13 the  layer-parallel  strain  rate  between  the  two  stiff  layers  is  shown  for  the  same
deformation  stages  as  in  figure  11.  Negative  values  (blue)  indicate  layer-parallel  compression
while positive values (green to red) indicate layer-parallel extension. Where possible, the transition
from these two regimes are pointed out with a black line where the layer-parallel  strain rate is
equal to zero. This zero contour is referred to as the incremental neutral line in the matrix. The
same observations as in figure  11 can be made in figure  13. After  10% shortening only layer-
parallel compression takes place. After 20%, 30% and 40% shortening, flattening normal to the
layer  increases.  It  is  clear  from figure  13 that  the  matrix  between the  two layers  needs  to  be
divided in terms of deformation history. The region 2, near the hinge, never experiences layer-
parallel  extension  while  the  region 1,  near  the  inflexion  point,  is  firstly  compressed  and later
extended. Together with a diffuse transition zone, region 3, this supports the idea of a tripartition
of the matrix.
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     a) 10% shortening      c)                 30% shortening

         b) 20% shortening           d)            40% shortening

Color-bar for layer-parallel strain rate

Fig.  13: Layer-parallel strain rate in the matrix between two stiff layers of viscosity contrast of 100. The
color-bar at the bottom of the figure applies to all pictures. The initial distance between the two layers is
equal to the layer thickness. The incremental neutral line in black is defined as the transition between layer-
parallel compression and extension.
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In contrast to figure 13 the strain can also be looked at as an accumulated finite quantity. This is
done in figure  14. As a measure for  the finite  strain the distance  between every point  of both
interfaces bounding the matrix is calculated and compared with the initial  distance between the
two layers. The area where this distance is shortened is colored in red, which means that a finite
flattening normal to the layer takes place. In figure 14 only the 30% and the 40% shortening stages
are shown because this red area does not develop earlier. It is clear that the area of finite flattening
broadens with increasing shortening. The boundaries of this red area are referred to as the finite
neutral line.

      a)                 30% shortening       b)            40% shortening

Fig. 14: Area in the matrix of finite flattening between the two layers. In the red area the distance between
the two layers is shorter than in the undeformed stage. This area develops shortly before 30% background
shortening and gets broader with increasing shortening.

The areas of incremental flattening (figure  13) and finite flattening (figure  14) are compared in
figure  15a. The area of incremental  flattening is defined as the area bounded by the two thick
layers  and the two zero contours  of  the  layer-parallel  strain  rate.  While  the  whole  area  of  the
matrix between the two stiff layers is equal to 100%, the blue dots give the percentage of the area
of  incremental  flattening and the  red  dots  give  the  percentage of the  area  of  finite  flattening.
Although the geometry of the neutral line in the matrix is completely different than in the stiff
layer (figure  9)  similar  conclusions  can be drawn. The area of  incremental  flattening develops
much earlier and moves earlier and faster through the material than the area of finite flattening.
The  outcome  is  that  the  area  of  finite  flattening  is  always  smaller  than  that  of  incremental
flattening. Layer-parallel shortening (equal to extension normal to the layer) of early deformation
first needs to be redone before finite flattening takes place. This is exactly the same mechanism as
in the hinge region of the stiff layers described in chapter 3.4.2.
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It is noteworthy that both the areas of finite and incremental  flattening decrease after  a certain
amount  of  far-field  compression,  whereas  it  is  earlier  the  case  for  the  area  of  incremental
flattening. This suggests that at a certain point the two fold limbs draw near to each other faster
than the area of flattening broadens. However, this effect does not affect the relation between the
area of incremental and finite flattening described above.

Fig 15: a) Blue: Area of incremental flattening normal to the layers; Red: Area of finite flattening normal to
the layers. Incremental flattening occurs earlier in the deformation history and covers bigger areas.
b) Blue: Minimal distance between the two layers. This minimal distance is situated near the inflexion point;
Red: Maximal distance between the two layers measured normal to the layers at the fold hinge.

Figure 15b) shows another distinct difference between region of deformation 1 and 2. The minimal
distance  between  the  layers  is  situated  near  the  inflexion  point  (region  1)  while  the  maximal
distance  measured  normal  to  the  layers  is  situated  in  the  hinge  region.  Both  distances  are
normalized  with  the  initial  distance  between  the  two  stiff  layers.  These  two  distances  evolve
differently. Continuous layer-parallel compression in the hinge region leads to a steady increase of
the  distance  between  the  layers  (red  dots).  The  region  near  the  inflexion  point  (blue  dots),
however, is characterized by the three phases of deformation described in chapter  3.5.1. During
layer-parallel compression, this region undergoes the same layer-parallel shortening as in the fold
hinge and the blue dots lie behind the red ones. Deformation phase 2 is mainly characterized by
shearing and the normalized distance between the layers stays constant for a short while. Later in
the deformation history (phase 3), flattening normal to the layers leads to a decrease of the distance
between the layers. This is the case as soon as approximately 17% shortening is reached, which is
also  the  first  appearance  of  the  area  of  incremental  flattening  in  figure  15a.  The  normalized
minimal distance falls below one (the initial value) for a far-field shortening of about 28%. This is
also the point where the area of finite flattening first occurs in figure 15a.
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Chapter 4

Asymmetric parasitic fold development
in multilayer systems

4.1. Introduction

The multilayer systems investigated in this chapter are always situated between two much thicker
layers like those described in chapter  3.5. The insights into double layer systems can be used to
investigate the  multilayers set in between. The boundary conditions are the same as described in
chapter 2.5., horizontal compression with a free slip boundary at the bottom and an open surface at
the top. Although this simple set of boundary conditions is used, the presence of the two thicker
layers  induces  a  complicated  strain  field  in  between.  This  chapter  shows  that  under  certain
circumstances, it is possible to get asymmetric parasitic folds. The model produces folds on two
scales,  the  primary folds  and  the  parasitic  folds.  This  feature  is  important  because  it  is  often
observed in nature.

The geometrical and numerical setup of the models presented in this chapter, which are the same
for every model is given in table  4. Further information is given in the text where the different
models are described.
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Setup for experiments on multilayer folds
Viscosity of stiff layers μl = 100

Viscosity of the matrix μm = 1

Initial layer thickness of both thicker layers Hthick 0 = 5

Initial layer thickness of
layers of the multilayer stack

Hthin 0 = 0.1

Initial thickness of the matrix between
the layers of the multilayer stack

Hm = 0.3

Initial thickness of matrix above
and below thick layers

Houter 0 = 20

Type of initial perturbation
for both thicker layers

Half cosine. Same perturbation for upper
and lower interface of both layers.

Type of initial perturbation for
layers of the multilayer stack

Random  white  noise.  Same  perturbation  for  upper  and
lower interface of each layers but different perturbation for
every layer.

Width of domain
Lx = 40 (half wavelength for a single layer with an initial
thickness of 5)

Time increment Δt = 10-3

Horizontal resolution 251 nodes

Table 4: Fundamental definitions for the experiments on multilayer folds. 

4.2. Influence of the amplitude of the initial perturbation

Without an initial perturbation of the layer interfaces, all layers would stay horizontal and only
layer-parallel  shortening  and  thickening  would  occur.  To  study  the  influence  of  this  initial
perturbation a multilayer system is used with the setup given in table 5.

Setup for experiments on multilayer folds with 15 thin layers

Amplitude of initial perturbation
of the thicker layers

Athick 0

H thick 0
= 1

1000
  ,  1

5000
 and 1

10000
  , respectively

Amplitude of initial perturbation
of layers of the multilayer stack

Athin 0

H thin 0
= 1

10
 for all layers

Vertical resolution over thick layers 9 nodes

Vertical resolution over thin layers 9 nodes

Vertical resolution over matrix between layers 9 nodes

Vertical resolution over matrix outside layers 25 nodes

Total
vertical

313 nodes

Total
resolution

78563
nodes

Table 5: Geometrical and numerical setup for models with 15 thin layers in the multilayer stack. This table
is complemented by table 4.
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Figure  16 shows the deformed multilayer sequence after 50% shortening for initial amplitude to
thickness ratios of  10-3, 5·10-3 and 10·10-3 for both thick layers. The initial amplitude of the thin
layers is constant for all three models. In the first case of a ratio of 10-3 (figure 16a) there are only
real parasitic folds in the hinge region. Near the inflexion point the thin layers are straight and only
small  parasitic  folds are developed in the transition zone. The major part  of parasitic  folds are
approximately symmetric. Only those in the transition zone are slightly asymmetric. In the third
case  of  a  ratio  of  10·10-3 (figure  16c)  the  parasitic  folds  are  strongly developed in  the  whole
domain but they are not asymmetric. The intermediate case of initial amplitude to thickness ratio
of the thick layers of  5·10-3 (figure  16b) develops parasitic folds throughout the whole domain.
Additionally the parasitic folds near the inflexion point are clearly asymmetric.

     a)     

Athick 0

H thick 0
= 1

1000      b)    

Athick 0

H thick 0
= 1

5000      c)    

Athick 0

H thick 0
= 1

10000

Fig. 16: Deformed multilayer sequence between two much thicker layers after 50% of far-field shortening.
Three different models are shown with a different initial ratio of amplitude to layer thickness for the thick
layers. a) 10-3, b) 5·10-3 and c) 10·10-3

The amplitude of the initial perturbation of the thick layers strongly controls on the development
of folds in the multilayer stack. The smaller this initial perturbation is, the later and the slower the
thick layers amplify. In other words, a small initial amplitude extends the phase of layer-parallel
compression before amplification and rotation of the thick layers start.  This  extended phase of
layer-parallel  compression  for  small  initial  amplitudes  allows  the  thin  layers  to  reach  higher
amplitudes before buckling of the thick layers starts.
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This is illustrated in figure  17 for the two cases of an initial amplitude to thickness ratio of the
thick layers of 10-3 and 10·10-3. The averaged amplitude of the two thick layers is in blue and the
averaged amplitude of the thin layers in the hinge region in red. Both amplitudes are normalized
with their corresponding initial layer thickness. The red and blue columns, which are set by eye,
indicate the initiation of buckling of the thin and the thick layers, respectively. In both cases the
initiation of buckling of the thin layers is approximately at 9% shortening because in both models
the initial amplitude to thickness ratio of the thin layers is the same. Buckling of the thick layers
influences the calculation of the averaged amplitude of the thin layers. Therefore the normalized
amplitudes of the thin layers to the right of the blue columns are not to be considered here.

The main difference between the two models is the start of buckling of the thick layers. With an
initial  amplitude  to  thickness  ratio  of  10-3 (figure  17a)  this  happens  at  around  17%  far-field
shortening while for the case of the higher ratio of 10·10-3 (figure 17b) this happens at around 32%
shortening. The normalized averaged thickness of the thin layers in the first case reaches a value of
about 2 when the thick layers start to buckle. In the second case, the thin layers have more time to
amplify and reach a value of 4.5. The intermediate case with initial amplitude to thickness ratio of
the thick layers of 5·10-3 is not shown here but would lie between the two. Figure 16 suggests that
for this  thesis,  this  is  the most desired case and, for  further investigations,  initial  amplitude to
thickness ratio of the thick layers of 5·10-3 is used.

       a)                 

Athick 0

H thick 0
= 1

1000        b)                

Athick 0

H thick 0
= 1

10000

Fig.  17: Red: Averaged amplitude of the thin layers in the hinge region normalized with the initial layer
thickness of the thin layers; Blue: Averaged amplitude of the two thick layers normalized with the initial
layer thickness of the thick layers. The two beams, which are set by eye, indicate the initiation of buckling for
the thin layers (red) and the thick layer (blue), respectively. The two subplots are modeled with a different
initial ratio of amplitude to layer thickness for the thick layers. The ratio for the thin layers is the same for
both subplots.
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The fact  that  buckling of  the  thick  layers  is  initiated  later  for  small  initial  amplitudes  is  also
observable in figure 18, which shows the normalized distance between the two thick layers in the
hinge region (red dots) and the minimal distance at the inflexion point (blue dots). For both initial
amplitude to thickness ratios, of the thick layers the distance at the fold hinge increases with time.
This increase is roughly the same in both cases and it indicates a layer-parallel shortening of the
hinge region. At the inflexion point the two thick layers draw nearer after a certain amount of far-
field shortening, but this happens much earlier for the first case of an initial amplitude to thickness
ratio of 1/1000 (figure 18a) than for the second case of an initial ratio of 10/1000 (figure 18b). 

Near the inflexion point the phase of shearing without flattening (zero slope of the blue points)
lasts longer in the second case (figure  18b) and more layer-parallel shortening is accumulated at
this point, which is expressed as the maximum value of the blue dots. This leads to the higher
amplitudes of the multilayer stack between the thick layers observed in figure 17. The short period
of shearing in the first case is followed by a strong flattening phase (high negative slope of the
blue dots in figure 18a) which even shortens the minimal distance at the inflexion point below the
initial distance. In other words the first model of initial amplitude to thickness ratio of 10·10-3 for
the thick layers reaches a state with finite flattening between the two thick layers.

        a)                

Athick 0

H thick 0
= 1

1000         b)               

Athick 0

H thick 0
= 1

10000

Fig.  18: Blue: Minimal distance between the two thick layers. This minimal distance is situated near the
inflexion point; Red: Maximal distance between the two thick layers measured normal to the layers at the
fold hinge. Between the two thick layers a multilayer stack with 15 layers is situated. a) and b) represent two
models with a different initial amplitude to thickness ratio of the thick layers.
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4.3. Number of layers in the multilayer stack

For the following investigation of the influence of the number of layers in a multilayer stack on the
development of asymmetric parasitic folds the setup summarized in table 6 is used. 

Setup for experiments on multilayer folds
Amplitude of initial perturbation
of the thicker layers

Athick 0

H thick 0
= 1

5000
 for both layers

Amplitude of initial perturbation
of layers of the multilayer stack

Athin 0

H thin 0
= 1

10
 for all layers

Thick layers Thin layers
Matrix
between layers

Matrix  outside
layers

Total
resolution

Ve
rti

ca
l r

es
ol

ut
io

n 1 layer system 17 nodes 17 nodes 17 nodes 41 nodes 40411 nodes

5 layer system 11 nodes 11 nodes 11 nodes 25 nodes 43139 nodes

10 layer system 9 nodes 9 nodes 9 nodes 25 nodes 58483 nodes

15 layer system 9 nodes 9 nodes 9 nodes 25 nodes 78563 nodes

20 layer system 9 nodes 9 nodes 9 nodes 25 nodes 98643 nodes

Table  6: Geometrical and numerical setup for models with a different number of layers in the multilayer
stack. This table is complemented by table 4.

Figure 19 shows the results after 50% far-field shortening of five models with a different number
of thin layers. The parasitic folds evolve differently in the different models. For one and five thin
layers (figures 19a and b) the parasitic folds mainly develop in the hinge region of the primary fold
where they are approximately symmetric. Between the limbs of the thick layers the thin layers are
almost  straight.  The  transition  zone between  the  hinge region and the  fold  limb contains  only
minor parasitic folds that show a slight asymmetry. The ten-layer-model (figure 19c) shows higher
amplitude  symmetric  folds  in  the  hinge  region  compared  to  the  previous  two  models.  The
amplitudes of the parasitic folds decrease thereby from hinge to inflexion point. The parasitic folds
near the inflexion point are well developed and clearly asymmetric (S-shaped for the displayed
part of the fold).

Models  with  15 and 20 thin  layers  (figures  19d and e,  respectively)  show even more distinct
asymmetric parasitic folds between the fold limbs of the two thick layers. They have very well
developed S-shapes  with  relatively high amplitude.  As in the  previous models,  the  amplitudes
increase towards the primary fold hinge, where the parasitic folds are symmetric. Note that figure
19d is the same as figure 16b.
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   a)             1 thin layer    b)            5 thin layers

   c)         10 thin layers      d)        15 thin layers

     e)         20 thin layers

f) part of figure 12

Fig.  19: a) – e): Geometry of five different multilayer models after 50% far-field shortening. The different
models are built of a different number of thin layers (1, 5, 10, 15 and 20) between two thick layers.
f) Intern geometry between the two layers of a double layer system after 50% shortening. Picture taken from
figure 12. See chapter 3.5.1 for further information.

A special feature of models with 15 and 20 layers is to be noted. The asymmetric parasitic folds of
the  multilayer  stack lying upon each  other  are  arranged in  a  way that  reproduces  the  internal
geometry between a deformed double layer  system shown in figure  19f.  The  S-shape near the
inflexion point and the tail-shape in the transition zone of the originally vertical beams described
in chapter 3.5.1. are clear in the multilayer sequence indicated in light red. This special geometry
is better developed in the model with 20 thin layers but is still identifiable with 15 layers.  The
model with a ten-layers stack slightly displays this feature. The much higher amplitudes of the two
layers in the inlay of figure  19 compared to the five presented multilayer models is due to the
higher  amplitude  of the initial  cosine  perturbation  of the  double layer  system.  The described
geometry between the two thick layers is therefore even more obvious, but it has nothing to do
with the presence or absence of the thin layers in between.
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For further investigation of the effect of the number of layers on the development of asymmetric
parasitic folds figure 20 is considered. It shows the evolution of the averaged amplitude of the thin
layers in the hinge region (red dots) as well as the averaged amplitude of the thick layers (blue
dots) for three different models built up of 5, 10 and 15 thin layers, respectively. All amplitudes
are normalized with their  corresponding initial  layer thickness. For both the thin and the thick
layers the point of initiation of buckling indicated with the red and the blue beam, respectively, is
approximately identical for all three models. It is at about 9% shortening for the thin layers and at
about 24% for the thick layers. Also the amplification of the thick layers is approximately the same
for all three models.

The main difference is the amplification of the thin layers of the multilayer stack. The more layers
a multilayer stack is made of, the faster the individual thin layers amplify. For a model with a high
number of layers, this leads to bigger amplitude of the thin layers at the initiation of buckling of
the  thick  layers.  This  difference  is  not  very  big  between  the  three  models  but  still  it  is
recognizable. Especially the thin layers in the model with five layers (figure 20a) have noticeable
lower amplitude at the point of buckling initiation of the thick layers than the two other models.

    a)              5 layers     b)             10 layers     c)             15 layers

Fig.  20: Red: Averaged amplitude of the thin layers in the hinge region normalized with the initial layer
thickness of the thin layers; Blue: Averaged amplitude of the two thick layers normalized with the initial
layer thickness of the thick layers. The two beams indicate the initiation of buckling for the thin layers (red)
and the thick layer (blue),  respectively.  The three subplots  are modeled with a different number of thin
layers.

For the three models with 5, 10 and 15 thin layers, respectively, the distance between the two thick
layers is shown in figure 21. The red dots represent the distance measured normal to the folds in
the hinge region while the blue dots show the minimal distance between the two layers, which is
situated at the inflexion point.  In all  models the two distances evolve similarly up to a certain
amount of far-field shortening. After this first phase of deformation the two lines separate. The
distance in the hinge region increases steadily while the distance at the inflexion point increases
slower and slower until it reaches a maximum value and decreases again. The far-field shortening
at which the blue dots reach their maximum, is roughly the same for the three models, at 34%.
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The main difference between the three  models  is  the amount  of  shortening necessary to  see a
difference  between  the  blue  and  the  red  dots.  This  separation  takes  place  earlier  for  smaller
numbers of thin layers. For the model with 15 thin layers (figure 21c) this separation takes place
immediately before the distance at the inflexion point reaches its maximum and then decreases. On
the contrary, the two lines in the model with five thin layers (figure  21a) separate at about 18%
shortening  and  it  needs  another  16%  before  the  maximum distance  at  the  inflexion  point  is
reached. This results in a much shallower gradient of the blue line between the separation and the
maximum point, which means a slower increase of the distance between the two thick layers at the
inflexion point compared to the models with more thin layers. With the knowledge of the initiation
of buckling of the thick layers (figure 20) this leads to the following conclusion.

In a multilayer stack comprising of a small number of thin layers, shortly after the thick layers start
to buckle the distance between the thick layers at the inflexion point evolve differently than in the
hinge region. The distance at the inflexion point increases slowly. This slow increase decelerates
in a relatively long phase and transforms to a fast reduction of the distance at the inflexion point.
In a multilayer stack of many thin layers, the distance between the two thick layers increases as
fast as the distance in the hinge region even after buckling of the thick layers has started. The
distance at the inflexion point abruptly stops to increase and the two layers start to draw closer
slowly.  This  abrupt  change from an increasing to  a  decreasing  distance  at  the  inflexion  point
suggests a very short phase of shearing without flattening, while this phase lasts much longer in
the case of a small number of thin layers. In all models the distance between the two thick layers at
the inflexion point does not reach the initial value after 50% shortening, although the model with
only five thin layers almost does, since the decrease of the distance is faster than in the models
with more thin layers.

    a)              5 layers     b)             10 layers     c)             15 layers

Fig.  21: Blue: Minimal distance between the two thick layers. This minimal distance is situated near the
inflexion point; Red: Maximal distance between the two thick layers measured normal to the layers at the
fold hinge. The three subplots are modeled with a different number of thin layers situated between the two
thick layers.
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Chapter 5

Discussion

5.1. Conditions for the occurrence of asymmetric parasitic folds

The insights into the strain distribution between two thick layers from chapter 3.5. can be used to
understand the occurrence or absence of asymmetric parasitic folds in a multilayer stack situated
between two thick layers. Figures 17 and 20 show that both the initial amplitude of the thick layers
and the number of thin layers in between cause a change of the amplitude of the thin layers at the
point of buckling initiation of the thick layers.

Schmid and Podladchikov, 2005 showed that the layers of a multilayer stack amplify faster than an
isolated single layer and that the growth rate increases with an increasing number of layers. They
derived an analytical solution for the growth rate of a multilayer stack, but this solution cannot be
applied to the models of this study because their constraint of the number of layers is not fulfilled
here. Nevertheless this multilayer effect on the growth rate is clear in figure 20. The second effect,
the initial perturbation of the thick layers, can easily be understood assuming that the amplification
of the two thick layers can be approximated with the amplification law of a single layer (equation
18). It is obvious that a smaller initial amplitude leads to a later initiation of buckling and a slower
amplification.

Summarizing the amplitude of the thin layers at the point of buckling initiation of the thick layers
increases with a higher number of thin layers as well as with a smaller initial perturbation of the
thick layers. For the occurrence of asymmetric parasitic folds near the inflexion point, it seems to
be necessary that the thin layers reach a sufficient amplitude before the thick layers start to buckle.

45



CHAPTER 5 DISCUSSION

The three phases of deformation of a double layer system described in chapter  3.5.1. need to be
reformulated for a multilayer stack between two layers.

1) The two thick layers have not started to buckle. The dominant deformation mechanism in the
multilayer stack is layer-parallel compression. Due to the much higher initial amplitude the thin
layers start to buckle and build symmetric folds.

2) The thick layers start to buckle which initiates a shear deformation in the multilayer stack with
a shearing plane parallel to the thick layers. Shearing rotates the folds of the thin layers and
produces their asymmetry.

3) The increasing amplification and closing of the thick layers leads to flattening of the multilayer
stack in between with a flattening direction perpendicular to the thick layers. This flattening
reduces the amplitudes of the thin layers. Shearing is still active during this deformation phase.

As already stated in chapter 3.5.2., these three phases of deformation only apply to the region near
the  inflexion  point  of  the  big-scale  fold,  and  they  can  be  tracked  in  figure  22.  The  figure  is
calculated with a multilayer stack with 15 thin layers and an initial amplitude of 5·10-3 for the two
thick layers (see tables 4 and 6 for specifications). The final geometry of figure 22f is the same as
shown in figures  16b and  19d. Subplot  22a visualizes the normalized distance between the two
thick layers in the hinge region normal to the layers in red and the minimal normalized distance
between  the  thick  layers,  situated  at  the  inflexion  point  in  blue.  The  normalized  averaged
amplitude  of  the  thick  layers  is  shown in  blue  in  subplot  22b while  the  normalized  averaged
amplitude of the thin layers in the hinge region is shown in red. The vertical  red lines indicate
which amount of shortening the four geometries (subplots 22c to f) are drawn at.

Buckling of the  thick layers  starts  at  about  24% shortening, so subplot  22c at  20% shortening
shows the geometry before the buckling initiation. The thin layers are already strongly amplified
while the thick layers are still flat. This state represents the first phase of deformation. Subplot 22d
at 30% shortening is drawn at the transition from the deformation phase 1 to 2. Buckling of the
thick layers is initiated though the amplitude is still very low. The deformation mechanism in the
multilayer stack is a combination of layer-parallel compression, which further amplifies the thin
layers, and shearing due to buckling of the thick layers, which makes the existing parasitic folds
asymmetric. Subplot 22e at 40% shortening shows the transition from the deformation phase 2 to
3. The thin layers of the multilayer stack do not amplify anymore but experience flattening normal
to  the  thick  layers,  although  flattening  is  not  visible.  The  amplitude  of  the  two  thick  layers
increased  and induced  more shearing in  the  multilayer  stack.  The  folds  of  the  thin  layers  are
obviously asymmetric now.
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After  50%  shortening  in  subplot  22f  the  deformation  phase  3  is  reached.  Flattening  of  the
multilayer stack near the inflexion point further decreases the folds of the thin layers and some of
them even disappear. Those that survive become very asymmetric with a very long limb on the
right side and a very short one on the left.

Fig. 22: Four stages of deformation in a multilayer stack with 15 thin layers. For numerical and geometrical
specifications  see  table  4 and  6.  a)  Distance  between  the  two  thick  layers  normalized  with  the  initial
thickness of the thick layers. Red: Distance at the fold hinge normal to the layer boundary; Blue: Minimal
distance, situated near the inflexion point. b) Red: Averaged amplitude of the thin layers near the fold hinge
normalized  with  the  initial  thickness  of  the  thin  layers.  Blue:  averaged  amplitude  of  the  thick  layers
normalized  with  the initial  thickness  of  the  thick layers.  c)  –  f)  Geometries  of  the multilayer  system at
different amount of far-field shortening indicated with red lines in a) and b). Three initially vertical fold
stacks are indicated in light red. For more information see text.
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This evolution of the asymmetric parasitic folds as well as the investigations in chapter 4 suggest
that  the thin layers necessarily need to develop some amplitude before the thick layers start  to
buckle. It is the initial layer-parallel compression that produces symmetric folds and superimposed
shearing that makes them asymmetric. In other words two sequential processes are necessary to
produce asymmetric parasitic folds in a multilayer stack, although these two processes are both
induced by constant far-field boundary conditions. The folds of the multilayer stack that amplified
too  little  at  the  point  of  buckling  initiation  of  the  thick  layers  disappear  during  the  third
deformation phase when flattening normal to the thick layers decreases the amplitudes of the thin
layers.

The selection of the folds that outlast the flattening phase is mostly due to the amplitude at the
point of buckling initiation on the thick layers. Interestingly, the high amplitude folds at this point
lie on top of each other and virtually build a vertical beam. Three of them are indicated in light red
in figure 22c. The surrounding of such fold stacks is made up of layers with lower amplitudes and
the  folds  disappear  during  the  third  deformation  phase.  The  fold  stack  itself  outlasts  the
deformation and deforms in the same way as the matrix between a double layer system without a
multilayer stack in between (figures 22d–f and figure 12).

This  behavior  suggests  that  the  deformation  and  the  strain  distribution  between  the  two thick
layers is approximately the same with and without a multilayer stack in between. This proposition
is supported by figure 23 which shows the same multilayer sequence as in figure 22f with a double
layer overlain in transparent light green. The double layer system is calculated with an identical
setup as the multilayer system, only that no thin layers are set in between. After 50% shortening
the thick layers of the two different systems are almost deformed identically. Since the multilayer
stack does not influence the behavior of the thick layers, it is the strain distribution of the double
layer system that controls the arrangement of the asymmetric parasitic fold stacks. Once these fold
stacks are initiated in the first deformation phase they behave like passive beams during the second
and the third phase.

Fig.  23: Black: multilayer system with 15 thin layers situated between
two thick layers after 50% shortening. For numerical and geometrical
specifications  see  table  4 and  6.  Transparent  green:  double  layer
system with exactly the same setup as the multilayer system but without
the thin layers.
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5.2. Model assumptions compared with a natural example

The amplitudes of the initial perturbation for the thin and the thick layers found in chapter 4.2. to
produce  the  most  suitable  multilayer  folds  for  this  study  need  some  more  consideration  and
comparison with examples occurring in nature. The initial amplitudes are always defined as values
normalized  with  the  corresponding  initial  layer  thickness  and  can  be  converted  into  absolute
values.

Initial amplitude of thin layers Athin , absolute = Athin , normalised⋅H thin =
1

10
⋅0.1 = 0.01 (27)

Initial amplitude of thick layers Athick , absolute = Athick , normalised⋅H thick =
1

5000
⋅5 = 0.001 (28)

It  is  questionable  whether  absolute  amplitude  for  the  thick  layers  of  one  order  of  magnitude
smaller than for the thin layers makes sense in nature. One could think of a turbidite sequence with
many small  events,  representing  the  equally  spaced  multilayer  stack,  and  a  few mega events,
representing the thicker layers,  like the one shown in figure  24. The initial  perturbation before
folding of such a sequence is mostly due to deposition, e.g. ripple marks or groove casts. The thick
layers are expected to have bigger perturbations, since the  flow velocity of such a deposition is
higher and therefore produces bigger ripples or other sole marks. From this point of view the used
initial perturbations of the modeled multilayer stack are ill chosen. Nevertheless, this set of initial
perturbations produces the best parasitic folds.

Fig. 24: Dr. Guy Simpson sitting in front of a turbidite sequence in the Makran area, south-eastern Iran. The
sequence is composed of many approximately equally spaced thin layers and few thicker layers like the one
to the right of Guy Simpson.
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Not only the amplitude but also the type of the initial perturbation is to be considered. While on
the thick layers a half cosine wave is imposed the thin layers are perturbed randomly. This half
cosine wave is chosen in a way that the perturbation has the dominant wavelength of the thick
layer for the single layer case. At the same time, the thin layers first need to establish the dominant
wavelength out of the random perturbation before the real amplification begins. This process takes
some time that the thick layers do not need. The high initial perturbation for the thin layers and the
low initial perturbation for the thick layers reduce this time with respect to the buckle initiation of
the thick layers. Using these initial perturbations allows the thin layers to buckle, which is desired.
From this point of view the amplitudes of the initial perturbations do not need to be nature-like.

The described  problem could be  solved with a  model,  which does  not  only spans  over  a half
wavelength but  over three or four full  wavelengths.  In the current  model the half  cosine wave
needs to be imposed on the thick layers. In a much broader model the initial perturbation of the
thick layers could be random with an amplitude equal to or higher than for the thin layers. Such a
model would be much more realistic but a new problem would appear. If the resolution should be
the same as for the current model, a much higher number of nodes in the horizontal direction is
needed. 1506 nodes would be needed for a model spanning over three full wavelengths resulting in
a total number of 591858 nodes for a model with 20 thin layers. This amount of nodes cannot be
handled  with  a  standard  personal  computer  and  more  sophisticated  computer  setups  and
programming tools are needed.

Considering a turbidite sequence, the assumption of initially parallel disturbed layers, meaning that
the  same  perturbation  is  used  for  both  the  upper  and  the  lower  interface  of  each  layer,  is  a
simplification. Bigger perturbations are expected to be at the bottom of a stiff  layer due to the
higher flow velocity. The decreasing flow velocity during deposition also decreases the height of
the perturbations. For a more accurate initial perturbation a lower and upper amplitude for both the
thin and the thick layers is needed, whereas the upper amplitude is smaller.  The effect  of such
reduced initial amplitude at the upper interfaces on the buckling process would be very little, since
the buckling is controlled by the stronger perturbation of a layer, which is at the lower interface.

The thicker layers bounding the multilayer stack are not necessarily individual layers. As Schmid
and Podladchikov, 2005 showed, thicker layers can also be multilayer stacks with much smaller
interlayers, which effectively behave as single layers. One can imagine a turbidite sequence, which
does not change in thickness of individual layers but in spacing between layers. Also many other
geological  settings  than  the  discussed  turbidite  sequence  can  be  build  as  a  multilayer  stack.
Multilayers can occur from microscopic scale like the individual mica layers of a schist up to km-
scale like the folds in a mountain belt.
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Chapter 6

Conclusions and prospects

6.1. Conclusions

The investigation of a multilayer stack bounded by two much thicker layers and a double layer
system built  up of the two thick layers only, reveals that  the deformation of the two bounding
layers is not influenced by the presence of the multilayer stack in between. Thereby all layers and
the matrix between and around them are linear viscous. The deformation history between the two
thick layers can be divided into three phases:

1) Layer-parallel compression without buckling of the thick layers. The thin layers buckle since
their initial amplitude is higher. They build symmetric folds

2) Buckling of the thick layers causes shearing in between. The thin layers become asymmetric.

3) High amplification of the thick layers causes flattening between and normal to the thick layers.
The amplitudes of the thin layers decrease and only the biggest asymmetric folds survive.

Whether a fold of a thin layer outlasts the third deformation phase or not mainly depends on its
amplitude when buckling of the two thick layers initiates. The higher this amplitude is, the less
likely the fold is flattened. On one hand this obviously depends on the amplitude of the initial
perturbations  of  the  thin  and  the  thick  layers.  On  the  other  hand  the  number  of  thin  layers
influences the amplification of the multilayer stack. The more layers the stack contains, the faster
they amplify. Therefore, a multilayer stack with a high number of thin layers and a high initial
perturbation is most likely to develop asymmetric parasitic folds.

The asymmetric folds that survive the third deformation phase are vertically stacked at the point of
buckling initiation of the thick layers. This vertical fold stack deforms almost like a passive beam
during the second and third deformation phase while the smaller surrounding folds disappear.
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The  numerical  approach  of  this  study allows  the  calculation  of  finite  strain  ellipses  and  their
coloring either with the accumulated von Mises equivalent strain or with the finite rotation angle
due to rigid body rotation. This visualization technique applied to linear viscous single layer folds
shows that the deformation mechanism in the layer clearly differs from the surrounding matrix.
The layer is  dominated  by rigid  body rotation  without  much shape  change while  the  opposite
applies for the matrix. In the amplifying layer two different kinds of neutral lines move from the
outer to the inner side of the layer. The incremental neutral line, which moves earlier through the
fold,  is  defined as the  position  where the  layer-parallel  strain  rate  is  equal  to zero.  The finite
neutral line moves later through the growing fold and is defined as the boundary between finite
layer-parallel extension and compression. The movement of these two neutral lines show that the
outer arc of a growing fold can easily be under a state of layer-parallel  extension although the
finite strain is still compressive.

6.2. Prospects

Now that the calculation and visualization of the finite strain ellipses is developed, many different
problems are waiting to be visualized properly. Although many problems are numerically solved
and the visualization does not seem to be a major scientific challenge, it would help to understand
the solutions better, especially for field geologists, analogue modelers and students who are used
to these ellipses.

Going on with the multilayer system used in this study the next step would be the investigation of
the  spacing  between  the  thin  layers  and  its  influence  on  the  development  of  parasitic  folds.
According to Schmid and Podladchikov, 2005 one would expect that narrowly spaced thin layers
amplify slower.  Therefore  the  chance to develop  asymmetric  parasitic  folds  near  the  inflexion
point of the big scale fold is smaller.

In this study a basic model is used to investigate a multilayer system. This model could be changed
or expanded in many ways, like:

• Different viscosity contrasts between the matrix and the thin and the thick layers, respectively
• Different initial perturbations which are closer to nature (problems with this, see chapter 5.2.)
• New geometrical setups, e.g. only one thick layer with a multilayer stack on top
• More sophisticated rheologies like power-law viscosity or visco-elasticity
• Heterogeneities in all possible parameters

These changes of the model are manifold and a huge amount of parameters are to be investigated.
Therefore  a  basic  model  was chosen  for  this  study and further  changes  should  be  considered
wisely before done, since not all of them have a significant effect on the development of parasitic
folds. Especially the refinement of the rheology would be interesting to know whether it has a big
effect or not, since this modification is the most time-consuming.
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Appendix A

Mechanical equations and their discretization
with the finite element method

A1. Derivation of the governing equations

The equations governing the two-dimensional displacement in an incompressible viscous solid are
derived by combining the following four relations:

1) Force balance

∂ xx

∂ x

∂ xy

∂ y
= 0

∂ xy

∂ x

∂ yy

∂ y
= 0

(A1)

where  σxx and  σyy are  normal  stresses  in  the  x-  and  y-direction,  respectively.  σxy is  the
corresponding shear stress. Compressive stresses are negative. Note that gravity is ignored.

2) Conservation of mass
∂ v x

∂ x

∂ v y

∂ y
= 0 (A2)

where  vx and  vy are the components of velocity in the x- and y-direction, respectively. The
assumption of mass conservation implies that an incompressible medium is considered.
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3) Rheological relation { xx

 yy

 xy
} = − p{110}  [2 0 0

0 2 0
0 0 ]{

̇ ' xx

̇ ' yy

̇ ' xy
} (A3)

where p is the pressure in the rock and μ is the viscosity. ̇ ' xx  and ̇ ' yy  are deviatoric strain
rates in the x- and y-direction, respectively.  ̇ ' xy  is the deviatoric rotation rate defined as
twice  the  deviatoric  shear  strain  rate  ̇ xy ,  which  is  not  computed  here.  This  rheological
equation defines an incompressible pure viscous medium.

4) Kinematic equation {̇ xx

̇ yy

̇ xy
} = { ∂ v x /∂ x

∂ v y /∂ y
∂ v x /∂ y∂ v y /∂ x} (A4)

This kinematic equation finally defines the relationship between the total strain rates ( ̇ xx ,
̇ yy ) and the rotation rate ̇ xy , respectively and the velocity field. 

Using matrix notation, these four equations can be written more compactly as

1) Force balance BT = 0 (A1)

2) Conservation of mass ∇T⋅v = 0 (A2)

3) Rheological relation  = − pm  D ̇ ' (A3)

4) Kinematic equation ̇ = B v (A4)

where

B = [∂/∂ x 0
0 ∂/∂ y
∂/∂ y ∂/∂ x] (A5)

 = { xx

 yy

 xy
} (A6)

∇ = {∂/∂ x
∂/∂ y} (A7)

v = {v x

v y
} (A8)

m = {110} (A9)
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D = [2 0 0
0 2 0
0 0 ] (A10)

̇ = {̇ xx

̇ yy

̇ xy
} (A11)

̇ ' = {̇ ' xx

̇ ' yy

̇ ' xy
} (A12)

With the definition of the deviatoric strain rates, which is

̇ ' = ̇ − 1/3̇ xx̇ yym (A13)

it is possible to rewrite equation (A3) in terms of total strain rates.

 = − pm  D ̇ (A14)

where the new rheological matrix D is defined as

D = [
4/3 −2/3 0
−2/3

4/3 0
0 0 ] (A15)

The four equations((A1), (A2), (A14) and (A4)) can be rearranged in a way that the stresses and
strain rates are eliminated. First one substitutes equation (A14) into (A1) which gives

BT D ̇ − BTm p = 0 (A16)

Substitution of equation (A4) in (A16) leads to the desired elimination.

BT D B v − BTm p = 0 (A17)

The multiplication of BT and m  in the second term is equivalent to the Nabla operator.

Thus the governing equations are

BT D B v − ∇ p = 0 (A18)

∇T⋅v = 0 (A2)

which is a set of three equations for the three unknowns vx, vy and p.
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A2. Incompressibility with the finite element method

The incompressibility described by equation (A2) is not implemented directly in the finite element
code.  It  is  necessary  to  assume  a  compressible  medium  and  converge  the  solution  towards
incompressibility within an iteration loop. Therefore, a more general compressible formulation of
the equation (A2) is necessary.

(A2) becomes
∂ p
∂ t
= −K ∇T⋅v  (A19)

where K is the incompressibility or the penalty parameter.

The two governing equations after all these steps have the following form:

BT D B v − ∇ p = 0 (A20)
∂ p
∂ t
= −K ∇T⋅v  (A21)

A3. Discretization of equation (A20)

In the next two sections the discretization of equations (A20) and (A21) is carried out. For this
purpose two different sets of shape functions are needed, one for the velocities (Nv) and one for the
pressure  (Np).  The  velocity  shape  functions  are  bi-quadratic  and  continuous  over  the  element
boundaries,  while  the  pressure  shape  functions  are  linear  and  discontinuous  over  the  element
boundaries. The corresponding element is a nine-node quadrilateral element with nine integration
points. For further details see Appendix B. The techniques used to discretise equation (A20) and
(A21) are described in many textbooks (e.g. Zienkiewicz and Taylor, 1994; Hughes et al., 1979).

For a more intuitive representation during the subsequent  steps the terms are fully written out.
Equation (A20) then has the following form.

∂
∂ x  43  ∂ v x

∂ x
− 2

3

∂ v y

∂ y   ∂
∂ y  ∂ v x

∂ y
 
∂ v y

∂ x  − ∂ p
∂ x
= 0

∂
∂ y − 2

3

∂ v x

∂ y
 4

3

∂ v y

∂ y   ∂
∂ x  ∂ v x

∂ y
 
∂ v y

∂ x  − ∂ p
∂ y
= 0

(A20)
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The first  step  in  the  discretization algorithm of equation (A20) consists  of  applying the shape
functions as weighting functions (Galerkin approach),  which in this  case are the velocity shape
functions. At the same time the integration over the whole finite element is carried out to get the
weighted residual formulation.

∬N v
T ∂∂ x  43  ∂ v x

∂ x
−2

3

∂ v y

∂ y dx dy∬N v
T ∂∂ y  ∂ v x

∂ y

∂ v y

∂ x dx dy−∬N v
T ∂ p
∂ x

dx dy=0

∬N v
T ∂∂ y − 2

3

∂ v x

∂ y
4

3

∂ v y

∂ y dx dy∬N v
T ∂∂ x  ∂ v x

∂ y

∂ v y

∂ x dx dy−∬N v
T ∂ p
∂ y

dx dy=0
(A21)

Integrating every term by parts moves the spatial derivatives to the Galerkin shape functions and
the  weak  formulation  of  the  weighted  residuals  results.  The  arising  boundary  terms  in  this
operation are ignored thereby as well as the changing sign, since the sign changes in every term.

∬ ∂N v
T

∂ x  43  ∂ v x

∂ x
− 2

3

∂ v y

∂ y dx dy ∬ ∂N v
T

∂ y  ∂ v x

∂ y
 
∂ v y

∂ x dx dy −∬ ∂N v
T

∂ x
p dx dy=0

∬ ∂N v
T

∂ y − 2
3

∂ v x

∂ y
 4

3

∂ v y

∂ y dx dy ∬ ∂N v
T

∂ x  ∂ v x

∂ y
 
∂ v y

∂ x dx dy −∬ ∂N v
T

∂ y
p dx dy=0

(A22)

At this  point  the  physical  values  vx,  vy and  p are  approximated  within  the  finite  element.  The
approximation of the velocities are realised with the property vector containing the velocities at
each of the nine nodes and the corresponding shape functions.

v x=[N v1 N v2 ... N v9]{v x1

v x2

...
v x9
}=N vv x , v y=[N v1 N v2 ... N v9 ]{v y1

v y2

...
v y9
}=N vv y (A23)

The property vector for pressures only contain one pressure value for each element (first entry) and
two entries for the slopes of the linear dependency on the position in the two dimensional space.

Therefore the approximation has the following form.

p = [N p1 N p2 N p3]{p1

p2

p3
} = N pp (A24)
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Equations (A23) and (A24) are substituted into equation (A22) whereas the property vectors v x ,
v y  and p  are not incorporated into the integration since they are independent on the x- and y-

position.

∬∂N v
T

∂ x
4
3

∂N v

∂ x
dx dyv x −∬

∂N v
T

∂ x
2
3

∂N v

∂ y
dx dyv y ∬

∂N v
T

∂ y

∂N v

∂ y
dx dyv x

∬ ∂N v
T

∂ y

∂N v

∂ x
dx dyv y −∬

∂N v
T

∂ x
N p dx dyp = 0

−∬∂N v
T

∂ y
2
3

∂N v

∂ y
dx dyv x∬

∂N v
T

∂ y
4
3

∂N v

∂ y
dx dyv y∬

∂N v
T

∂ x

∂N v

∂ y
dx dyv x

∬ ∂N v
T

∂ x

∂N v

∂ x
dx dyv y −∬

∂N v
T

∂ y
N p dx dyp = 0

(A25)

An appropriate reorganization of the whole equation leads to a more concise formulation.

∬∂N v
T

∂ x
4
3

∂N v

∂ x
dx dy ∬∂N v

T

∂ y

∂N v

∂ y
dx dyv x

 −∬∂N v
T

∂ x
2
3

∂N v

∂ y
dx dy ∬∂N v

T

∂ y

∂N v

∂ x
dx dyv y −∬

∂N v
T

∂ x
N p dx dyp = 0

−∬∂N v
T

∂ y
2
3

∂N v

∂ y
dx dy ∬∂N v

T

∂ x

∂N v

∂ y
dx dyv x

 ∬∂N v
T

∂ y
4
3

∂N v

∂ y
dx dy ∬∂N v

T

∂ x

∂N v

∂ y
dx dyv x−∬

∂N v
T

∂ y
N p dx dyp = 0

(A26)

These two equations can be written in a more compact matrix notation in the following way.

KM v  Gp = 0 (A26)

where

KM = ∬ BT D B dx dy (A27)

G = −∬BG
T N p dx dy (A28)

v = {
v x1

v y1

v x2

v y2

...

...
v x9

v y9

} (A29)
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B = [
∂N v1

∂ x
0

∂N v2

∂ x
0

∂N v3

∂ x
0 ...

∂N v9

∂ x
0

0
∂N v1

∂ y
0

∂N v2

∂ y
0

∂N v3

∂ y
... 0

∂N v9

∂ y
∂N v1

∂ y
∂N v1

∂ x
∂N v2

∂ y
∂N v2

∂ x
∂N v3

∂ y
∂N v3

∂ x
...

∂N v9

∂ y
∂N v9

∂ x
] (A30)

and

BG = [∂N v1

∂ x
∂N v1

∂ y
∂N v2

∂ x
∂N v2

∂ y
∂N v3

∂ x
∂N v3

∂ y
...
∂N v9

∂ x
∂N v9

∂ y ] (A31)

A4. Discretization of equation (A21)

Before the finite element discretization of equation (A21) is carried out, the time derivation of the
left side is approximated with a finite difference approach.

pnew− pold

 t
= −K ∂ v x

∂ x

∂ v y

∂ y  , pnew  K t∂ v x

∂ x

∂ v y

∂ y  = pold (A32)

But  now the  Galerkin  shape  functions  are  applied,  which  in  this  case  are  the  pressure  shape
functions. Integration over the element is carried out at the same time.

∬N p
T pnew dx dy  K t∬N p

T ∂ v x

∂ x
dx dy  ∬N p

T ∂ v y

∂ y
dx dy = ∬N p

T pold dx dy (A33)

To avoid spatial derivation of the pressure shape functions, no integration by parts is carried out at
this state. Instead the physical properties  vx,  vy and  p are approximated directly in the same way
described above using equations (A23) and (A24). Again the property vectors are not incorporated
into the integration.

∬N p
T N p dx dypnewK t∬N p

T ∂N v

∂ x
dx dyv x∬N p

T ∂N v

∂ y
dx dyv y=∬N p

T N p dx dypold (A34)

Equation (A34) can be written more compactly with a matrix notation.

Mpnew − K t GT v = Mpold (A34)

where

M = ∬N p
T N p dx dy (A35)
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A5. Derivation of the final equation system

Equations (A26) and (A35) together build up a system of three discrete equations.

[ KM G
−K t GT M ]{ vpnew} = { 0

Mpold} (A36)

Note that in the first  equation the vector  p  is  replaced by  pnew  which means that the whole
system  becomes  implicit.  Using  the  second  part  of  (A36)  as  an  expression  for  pnew  and
substituting this into the first part (A36) leads to a new equation.

KM v  G pold  K t M−1GT v = 0 (A37)

After some reorganization one gets the final equation that can be solved with a computer code.

KM  K t G M−1 GT v = − Gpold (A38)

Using the new expression

KL = KM  K t G M−1GT (A39)

equation (A38) can be simplified even more.

KLv = − Gpold (A40)

The solution of equation (A40) results in a velocity field defined by the two components v x  and
v y .
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A6. Incompressibility with the Uzawa algorithm

As stated  in  section  A2,  the  whole  derivation  including  the  final  equation  (A40)  considers  a
compressible medium which does not conserve mass within a single element. This problem can be
solved with a type of the Uzawa iteration algorithm. Therefore the following steps are carried out
within an iteration loop. Let n be the iteration step.

1) The first solution of equation (A40) is carried out with an arbitrary property vector pold .
Mostly a zero value is chosen.

2) The divergence of the velocity field is calculated with equation (A2) to check how bad
the incompressibility assumption is satisfied. For a perfect incompressible medium the
divergence is zero at every point.

3) A new pressure property vector is calculated using a modified version of equation (A34).

pn = pn−1  K t M−1 GT v (A41)

4) Equation (A40) is solved again by using the new pressure property vector 
from step 3) as pold .

5) Repeating steps 2) to 4) decreases the divergence of the velocity field from one iteration
step  to  another.  The  iteration  loop  ends  as  soon as  the  divergence  reaches  a  certain
minimum value.

This  Uzawa algorithm is  performed every time step after  the matrices  KM,  G,  M and  KL are
assembled.  Besides  the solution of equation (A40),  the velocity field,  the pressure field  results
from performing the Uzawa iteration loop as well. Setting the minimum value for the divergence
small enough guarantees that the incompressibility assumption is satisfied with a high accuracy. 
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To optimize the Uzawa iteration  the penalty  parameter  K in  equation  (A19) has  to  be chosen
wisely. To illustrate this figure A1 shows two simulations with K = 10-10 and 10-14, respectively. In
figure 1a) more iteration steps were necessary for the divergence to reach the exit criteria, but at
the same time the error of the solution is much smaller than in b). The geometrical setup for both
cases is the same as described in chapter 2.6.1. The resolution is very small since it does not affect
the  accuracy  of  the  matrix  division.  In  order  to  calculate  the  error  of  the  matrix  division  the
solution v  is set back into equation (A40) and the right-hand side is calculated this way. The error
is given in percent.

       a)                        K = 10-10        b)                        K = 10-14

Fig. A1: Maximum value of the divergence of the velocity field versus the number of iteration steps. The
divergence decreases faster in a) where K = 10-10 than in b) where K = 10-14 The error of the matrix division
in a) is always around 10-10 and in b) 10-6
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Appendix B

Numerical integration and the use of local
elements

B1. Gauss-Legendre quadrature

The final equation (A40) in Appendix A is made up of various terms which contain integrals. For
these integrals no analytical solution exists and they have to be evaluated numerically within the
finite element program. For this purpose the so-called Gauss-Legendre quadrature is applied. This
approach uses a local coordinate system (ζ , η) and a quadratic reference element with a side length
of 2 and its center in the zero point.

∫
−1

1

∫
−1

1

f  ,d d  ≃ ∑
i=1

nx

∑
j=1

ny

f i , jwi w j = ∑
n=1

nip

f n ,nwn (B1)

where nx, ny and nip are the number of integration points in x- and y-direction, respectively, and
the total number of integration points per element. (ζi   , ηj) and (ζn  , ηn), respectively are the local
spatial coordinates of the integration points and wi, wj and wn, respectively are the weights.

All  terms in equation (A40) are  expressed in terms of the global  coordinates  (x ,  y) while  the
numerical  integration with equation (B1) requires a formulation in the local coordinate system.
Therefore two transformations have to be made.
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APPENDIX B NUMERICAL INTEGRATION AND THE USE OF LOCAL ELEMENTS

1) The local element is the same for every global element and does not change its shape, while
the global system can deform heavily. For this practical reason the shape functions and their
derivatives are defined in terms of local coordinates. To satisfy equation (A30) and (A31) the
spatial  derivatives  have  to  be  reformulated  to  global  coordinates.  The  shape  functions
themselves do not need to be converted from local to global coordinates since a special  iso-
parametric local element is chosen whose geometry is defined by the same shape functions.
The transformation of the spatial derivatives is defined in the following way.

{ ∂∂∂
∂
} = [ ∂ x

∂
∂ y
∂

∂ x
∂

∂ y
∂ ]{

∂
∂ x
∂
∂ y
} = J { ∂∂ x

∂
∂ y
} (B2)

where  J is  the  Jacobian  matrix.  This  matrix  can  be  found  by  differentiating  the  global
coordinates with respect to the local coordinates. This is also done by multiplying the spatial
derivatives of the shape functions with respect to local coordinates and the global coordinates
of a particular element.

J = [ ∂N v1

∂
∂N v2

∂
∂N v3

∂
...
∂N v9

∂
∂N v1

∂
∂N v2

∂
∂N v3

∂
...
∂N v9

∂
][

x1 y1

x2 y2

x3 y3

... ...
x9 y9

] (B3)

where  x1 and  y1 are the global coordinates of node number 1, etc. Given this, equation, the
derivatives of the shape functions in terms of global coordinates can be found.

{ ∂∂ x
∂
∂ y
} = J−1{ ∂∂∂

∂
} (B4)

2) In equation (A40) the area over which the integration has to be carried out is defined in terms
of global coordinates. However, equation (B1) requires a formulation in the local system. The
use of the determinant of the Jacobian matrix transforms the integration in the following way.

∬ f x , y dx dy = ∫
−1

1

∫
−1

1

f  ,det∣J∣d d  (B5)
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Applying all these steps to equation A40 leads to the final summation which is done in the finite
element code within a loop over all integration points of one element. Starting with the derivatives
of the shape functions

∇ ,N = {∂N 1

∂
∂N 2

∂
∂N 3

∂
...
∂N 9

∂
∂N 1

∂
∂N 2

∂
∂N 3

∂
...
∂N 9

∂
} (B6)

one first applies equation (B4) and gets

∇ x , y N = J−1∇ ,N = {∂N 1

∂ x
∂N 2

∂ x
∂N 3

∂ x
...
∂N 9

∂ x
∂N 1

∂ y
∂N 2

∂ y
∂N 3

∂ y
...
∂N 9

∂ y
} (B7)

This expression can now be used for creating the terms in equations (A27) and (A28), which can
be written in a much more general way.

∬ f ∇ x , y N dx dy = ∬ J−1 f ∇ ,N dx dy (B8)

Using equation (B5) converts the integration to the local coordinate system.

∬ J−1 f ∇ ,N dx dy = ∫
−1

1

∫
−1

1

J−1 f ∇ ,N det∣J∣d d  (B9)

Note that the shape functions themselves do not change during this transformation from global to
local coordinates.

Applying the Gauss-Legendre quadrature leads to the desired summation formula.

∫
−1

1

∫
−1

1

J−1 f ∇ ,N det∣J∣d d  = ∑
n=1

nip

J−1 f ∇ ,N det∣J∣wn (B10)

This summation can now be carried out for every element in the spatial domain.
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B2. The Q9/3 element

Figure B1 shows the local reference elements used in the finite element code, which consist of
nine nodes, one at each corner, one in the middle of each side and one in the very middle of the
element. Inside the element there are nine integration points. The element is quadratic with a side
length of 2 and its center lies in the zero point.

Fig. B1: Local reference element with nine nodes and nine integration points. Black are the nodes with their
local  numbers,  green the corresponding  degrees  of  freedom (vx and  vy) at  each node  and red the nine
integration points. Note that the center of the element lies in the zero point.
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For this type of element there are nine bi-quadratic shape functions which interpolate the unknown
velocity function. The sum of all nine velocity shape functions is equal to one at every point within
the element. Each function is equal to one at its corresponding node.

N v1 =
1
4
2− 2− 

N v2 =
1
4
2 2− 

N v3 =
1
4
2 2 

N v4 =
1
4
2− 2 

N v5 = −
1
2
2− 12− 

N v6 = −
1
2
2 2− 1

N v7 = −
1
2
2− 12 

N v8 = −
1
2
2− 2− 1

N v9 = 
2− 12− 1

(B11)

The weights for the numerical integration are defined as follows.

{
w1

w2

w3

w4

w5

w6

w7

w8

w9

} = 1
81 {

25
25
25
25
40
40
40
40
64

} (B12)

While the velocity shape functions are continuous over the element boundaries, the set of shape
functions used to interpolate the pressure is discontinuous and linear within an element.

As stated in Appendix A, section A3 the property vector for the pressure contains one pressure
value in the middle of each element and two slopes for the linear spatial dependency. Therefore the
sum of all pressure shape functions is not equal to one, except for the zero point.

N p1 = 1
N p2 = 
N p3 = 

(B13)
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Figure B2 shows a simplified distorted global element-domain. Every element must be mapped to
the  local  element.  If  the  numerical  integration  was  carried  out  on  the  global  elements,  the
formulation would be different for each element.

Fig.  B2: Schematic  distorted  global  elements.  Every  element  has  to  be  mapped  to  the  quadratic  and
undistorted local element of Figure B1.
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APPENDIX C FLOWCHART OF THE FINITE ELEMENT CODE

Appendix C: Flowchart of the finite element code

This appendix summarizes the structure of the finite
element code in a flowchart. Note that in the main
code no visualization is performed since this is the
aim of the postprocessing algorithm.

    → → → → → → → → → → → → → → → → → → → → → → → → → → →
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Appendix D

Dimensionless formulation

In  geological  systems  the  orders  of  magnitude  of  different  properties  are  so  different  (e.g.
timescale  vs.  strain  rate)  that  the  matrices  in  the  finite  element  code  become ill  conditioned.
Therefore three characteristic values are defined and all physical properties are normalized using
these characteristic values.

Property Symbol Unit Used value
Characteristic length scale Lc [m] 1

Characteristic time scale tc [s] 1

Characteristic viscosity μc [Pa s] 1

Table  D1: Characteristic  properties  used  in  the  finite  element  code  for  the  normalization  of  all  other
properties

During this study all physical parameters are normalized using the three characteristic values in
table  D1.  This  normalization  leads  to  dimensionless  quantities.  The  physical  value  for  each
quantity can be derived by redoing the normalization. All normalizations are given in table D2.
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Quantity Symbol Normalization

Length L = Lphysical  / Lc

Time t = tphysical  / tc

Viscosity μ = μphysical  / μc

Velocity v = vphysical  / Lc · tc

Displacement u = uphysical  / Lc

Strain rate ̇ = ̇ physical  · tc

Strain ε = no normalization

Rotation rate ̇ = ̇ physical  · tc

Rotation ω = No normalization

Rotation angle θ = No normalization

Stress σ = σphysical  / μc · tc

Pressure p = pphysical  / μc · tc

Incompressibility K = Kphysical  / μc · tc

Table D2: Normalization for different quantities in the finite  element code.  This normalization leads to
dimensionless formulations.
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Appendix E

Strain distribution in single layer folds
with different viscosity contrasts

In chapter 3.4. the finite and incremental strain distribution in a single layer fold with a viscosity
contrast of 100 is analyzed. Appendix E expands this investigation to single layer folds with lower
viscosity contrasts. For this reason three more experiments were performed with exactly the same
geometrical and numerical setup as described in table 2 in chapter 3.4., but with viscosity contrasts
of 10, 25 and 50, respectively. The visualization of these three runs is given in figure E1, whereas
every picture is built  up of two parts.  While  on the left-hand side  the finite strain ellipses are
colored with the accumulated von Mises equivalent strain, the coloring on the right-hand side is
due  to  the  finite  rotation  angle.  The  coloring  schemes  are  the  same  for  all  pictures  and  the
corresponding color-bars are given on every page. In three pictures (viscosity contrast 25, 50%
shortening;  viscosity  contrast  50,  40%  and  50%  shortening)  the  incremental  neutral  line  is
positioned behind the finite strain ellipses as a thick red line. In all other pictures the incremental
neutral line does not exist.

Figure E1 clearly shows that the amplification decreases with decreasing viscosity contrast. While
the layer with viscosity 50 shows a nice amplification history, the layer with viscosity 10 hardly
amplifies,  even at  50% shortening. This  difference in amplification has a major  impact  on the
strain distribution and the neutral line. In all cases the rigid body rotation is dominant in the layer
while the accumulated von Mises strain dominates the matrix. But both the accumulated von Mises
equivalent strain and the finite rotation angle due to rigid body rotation differ much less between
the layer and the matrix in the case of viscosity contrast of 10. For a viscosity contrast of 50 both
quantities evolve differently in the layer and in the matrix from early deformation stages onward.
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Not only the difference between layer and matrix, but also the difference within the matrix and
within  the  layer,  change  with  the  viscosity  contrast.  This  is  mostly  due  to  the  different
amplification of the folds. Since the layer with a viscosity contrast of 10 hardly evolves into a fold,
the matrix surrounding it experiences an almost homogeneous strain rate at the layer boundary. On
the contrary,  the  strain  rate  at  the  boundary between the  layer  with a viscosity  of  50 and the
surrounding matrix is far from homogeneous. The vertical strain rate at this interface is equal to
the  sum of  the  far-field  vertical  strain  rate  and  the  strain  rate  induced  by  the  growing  fold.
Therefore  the  matrix  near the  inner  arc  of  the fold  is  vertically  much more extended than the
matrix near the outer arc.

Within the stiff layer it is the finite rotation due to rigid body rotation that varies most notably. In
all  cases the rotation at  the fold hinges is equal  to zero during the whole deformation history.
Because the amplification of the layer with a viscosity contrast of 50 is much higher than in the
case of a viscosity contrast of 10, the variation of the finite rotation angle is also much higher. This
is  straightforward since  the finite  rotation angle for  the  stiff  layers is  directly visible  from the
geometry itself.  Both  the  incremental  and  the  finite  neutral  line  behave  different  for  different
viscosity contrasts. The small bending in the hinge region of the layer with viscosity 10 causes too
little folding-related extension in the outer arc compared to the far-field compression. Therefore,
the compression dominates the outer arc and no neutral line can develop. In the case of a viscosity
contrast of 25 the incremental neutral line develops between 40% and 50% shortening.

Fig. E1 (pages  76 to  79): Growing single layer folds at different stages of external shortening and with
different viscosity contrasts between the layer and the matrix. The finite strain ellipses on the left-hand side
of every picture are colored with the accumulated von Mises equivalent strain while the ones on the right-
hand side are colored with the finite rotation angle. Both color-schemes are the same for all pictures. If an
incremental neutral line exists it is positioned behind the ellipses as a thick red line.
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50% shortening
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The case of a viscosity contrast of 50 is shown in detail in figure E2 with a single beam situated in
the hinge region of the fold. For comparison the same setup is shown in figure 10, chapter 3.4.2.
for a viscosity contrast of 100. Both the incremental and the finite neutral line move slower and
later from outer arc to inner arc for the lower viscosity contrast.  For the layer with a viscosity
contrast of 100 the incremental neutral line develops between 10% and 25% shortening and the
finite  neutral  line  between  40% and 50%.  On the  contrary,  the  incremental  neutral  line  for  a
viscosity contrast  of 50 develops between 25% and 40% shortening and the finite  neutral  line
between 60% and 70%. This clearly shows that the viscosity contrast between the matrix and the
stiff layer has a major impact on the finite and on the incremental strain distribution.

Fig. E2: Finite (left beams) and incremental strain ellipses in the fold hinge at different stages of shortening
for a single layer fold with a viscosity contrast of 50. For comparison with a viscosity contrast of 100 see
figure 10, chapter 3.4.2.
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